scholarly journals Transcriptional and Post-transcriptional Regulation of Ethylene Biosynthesis by Salicyclic Acid in Kiwifruit

2021 ◽  
Author(s):  
Jian Wang ◽  
Xiaofen Liu ◽  
Wen-qiu Wang ◽  
Hui-qin Zhang ◽  
Xue-ren Yin

Levels of ethylene, implicated in a diverse array of plants for inducing fruit ripening, is influenced by genetic and environmental factors, such as the other plant hormones. Among these, salicylic acid (SA) has been demonstrated to inhibit ethylene biosynthesis in fruit, yet the underlying regulatory mechanisms remains elusive. Here, we showed that treatment with exogenous ASA (acetylsalicylic acid) dramatically reduced ethylene production, as well as activities of ACC synthase (ACS) and ACC oxidase (ACO), in kiwifruit tissues. Comparative transcriptome analysis indicated the differential expression of ethylene biosynthetic genes (AdACS1/2 and AdACO5). A screen of transcription factors indicated that AdERF105L and AdWRKY29 were ASA-responsive regulators of AdACS1/2 and AdACO5, respectively. In addition to these genes, AdACS3 and AdACO3 were abundantly expressed in both ASA-treated and control tissues. AdACS3 protein was phosphorylated and stabilized by AdMPK16, a mitogen-activated protein kinase; while AdACO3 activity was enhanced by AdAP, an aspartic peptidase. Exogenous ASA down-regulated AdMPK16 and AdAP, thereby influencing ethylene biosynthesis at a post-transcriptional level. These findings propose a multidimensional system for SA-inhibition on ethylene biosynthesis, inducing differential expression of some ethylene biosynthesis genes, as well as differential effects on protein activity on other targets.

2010 ◽  
Vol 426 (3) ◽  
pp. 293-306 ◽  
Author(s):  
Peng-Yuan Wang ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
Lan Xiao ◽  
...  

MEK-1 [MAPK (mitogen-activated protein kinase) kinase-1] is an important signal transducing enzyme that is implicated in many aspects of cellular functions. In the present paper, we report that cellular polyamines regulate MEK-1 expression at the post-transcriptional level through the RNA-binding protein HuR (Hu-antigen R) in IECs (intestinal epithelial cells). Decreasing the levels of cellular polyamines by inhibiting ODC (ornithine decarboxylase) stabilized MEK-1 mRNA and promoted its translation through enhancement of the interaction between HuR and the 3′-untranslated region of MEK-1 mRNA, whereas increasing polyamine levels by ectopic ODC overexpression destabilized the MEK-1 transcript and repressed its translation by reducing the abundance of HuR–MEK-1 mRNA complex; neither intervention changed MEK-1 gene transcription via its promoter. HuR silencing rendered the MEK-1 mRNA unstable and inhibited its translation, thus preventing increases in MEK-1 mRNA and protein in polyamine-deficient cells. Conversely, HuR overexpression increased MEK-1 mRNA stability and promoted its translation. Inhibition of MEK-1 expression by MEK-1 silencing or HuR silencing prevented the increased resistance of polyamine-deficient cells to apoptosis. Moreover, HuR overexpression did not protect against apoptosis if MEK-1 expression was silenced. These results indicate that polyamines destabilize the MEK-1 mRNA and repress its translation by inhibiting the association between HuR and the MEK-1 transcript. Our findings indicate that MEK-1 is a key effector of the HuR-elicited anti-apoptotic programme in IECs.


1996 ◽  
Vol 121 (4) ◽  
pp. 751-755 ◽  
Author(s):  
James R. Gorny ◽  
Adel A. Kader

Preclimacteric `Golden Delicious' apples (Malus domestica Borkh.) were stored at 0 °C in: air; air + 5% CO2; 2% O2 + 98% N2; or 2% O2 + 5% CO2 + 93% N2, and sampled monthly for 4 months to investigate the mechanism(s) by which reduced O2 and/or elevated CO2 atmospheres inhibit C2H4 biosynthesis. Ethylene biosynthesis rates and in vitro ACS activity were closely correlated in all treatments, while in vitro ACO activity significantly increased over time regardless of the treatment. Only a small amount of C2H4 biosynthesis inhibition by lowered O2 and/or elevated CO2 atmospheres could be accounted for by suppressed induction of ACO activity. Western blot analysis demonstrated that apples held for 2 months in lowered O2 and/or elevated CO2 atmospheres had significantly reduced abundance of ACO protein, compared to fruit held in air. Northern blot analysis of ACS and ACO transcript abundance revealed that reduced O2 and/or elevated CO2 atmospheres delay induction and reduce the abundance of both transcripts. Reduced O2 and/or elevated CO2 atmospheres reduce C2H4 biosynthesis by delaying and suppressing expression of ACS at the transcriptional level and by reducing the abundance of active ACO protein. Chemical names used: 1-aminocyclopropane-1-carboxylic acid (ACC), ACC synthase (ACS), ACC oxidase (ACO), ethylene (C2H4), S-adenosylmethionine (AdoMet).


2016 ◽  
Vol 11 (3) ◽  
pp. 346-356
Author(s):  
Nada Ayadi ◽  
Sarra Aloui ◽  
Rabeb Shaiek ◽  
Oussama Rokbani ◽  
Faten Raboud ◽  
...  

1998 ◽  
Vol 67 (5) ◽  
pp. 685-692 ◽  
Author(s):  
Shinjiro Shiomi ◽  
Mikihiro Yamamoto ◽  
Teiji Ono ◽  
Katsuya Kakiuchi ◽  
Junichi Nakamoto ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3868-3877 ◽  
Author(s):  
Roger Rezzonico ◽  
Rachel Chicheportiche ◽  
Veronique Imbert ◽  
Jean-Michel Dayer

β2 integrins are involved in the recruitment of leukocytes to inflammatory sites and in cellular activation. We demonstrate that ligation of CD11b (Mac-1, CR3) or CD11c (p150, CR4) alpha chains of β2 integrins by mAbs or soluble chimeric CD23 (sCD23) on human freshly isolated monocytes rapidly stimulates high levels of interleukin-1β production. This induction takes place at the transcriptional level and is regulated by members of the mitogen-activated protein kinase (MAPK) family. Indeed, stimulation of monocytes through engagement of CD11b or CD11c results in the phosphorylation and activation of ERK1, ERK2, and p38/SAPK2 MAP kinases. U0126, a potent inhibitor of the upstream activator of ERK1/2, ie, MEK1/2, suppresses IL-1β messenger RNA (mRNA) expression in a dose-dependent fashion, showing the implication of this pathway in the transcriptional control of IL-1β production. On the other hand, inhibition of p38 by SB203580 indicates that this MAPK is involved in the control of IL-1β production at both transcriptional and translational levels. Together these data demonstrate that ligation of CD11b and CD11c β2 integrins by mAbs or sCD23 fusion proteins triggers the activation of 2 distinct MAPK signaling pathways that cooperate in controlling IL-1β synthesis at different levels.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3868-3877 ◽  
Author(s):  
Roger Rezzonico ◽  
Rachel Chicheportiche ◽  
Veronique Imbert ◽  
Jean-Michel Dayer

Abstract β2 integrins are involved in the recruitment of leukocytes to inflammatory sites and in cellular activation. We demonstrate that ligation of CD11b (Mac-1, CR3) or CD11c (p150, CR4) alpha chains of β2 integrins by mAbs or soluble chimeric CD23 (sCD23) on human freshly isolated monocytes rapidly stimulates high levels of interleukin-1β production. This induction takes place at the transcriptional level and is regulated by members of the mitogen-activated protein kinase (MAPK) family. Indeed, stimulation of monocytes through engagement of CD11b or CD11c results in the phosphorylation and activation of ERK1, ERK2, and p38/SAPK2 MAP kinases. U0126, a potent inhibitor of the upstream activator of ERK1/2, ie, MEK1/2, suppresses IL-1β messenger RNA (mRNA) expression in a dose-dependent fashion, showing the implication of this pathway in the transcriptional control of IL-1β production. On the other hand, inhibition of p38 by SB203580 indicates that this MAPK is involved in the control of IL-1β production at both transcriptional and translational levels. Together these data demonstrate that ligation of CD11b and CD11c β2 integrins by mAbs or sCD23 fusion proteins triggers the activation of 2 distinct MAPK signaling pathways that cooperate in controlling IL-1β synthesis at different levels.


Sign in / Sign up

Export Citation Format

Share Document