scholarly journals Differential Deep Brain Stimulation Sites and Networks for Cervical vs. Generalized Dystonia

Author(s):  
Andreas Horn ◽  
Martin Reich ◽  
Siobhan Ewert ◽  
Ningfei Li ◽  
Bassam Al-Fatly ◽  
...  

Dystonia is a debilitating disease with few conservative treatment options but many types of isolated dystonia can be effectively treated using deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations between optimal stimulation sites and potential network effects in the two types of dystonia have not been carried out. Here, we retrospectively investigate clinical results following DBS for cervical and generalized dystonia in a multi-center cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce a novel approach to map optimal stimulation sites to anatomical space. Second, we analyse stimulation in context of a detailed pathway model of the subcortex to investigate the modulation of which tracts accounts for optimal clinical improvements. Third, we investigate stimulation in context of a broad-lense whole-brain functional connectome to illustrate potential multisynaptic network effects. Finally, we construct a joint model using local, tract- and network-based effects to explain variance in clinical outcomes in cervical and generalized dystonia. Our results show marked differences in optimal stimulation sites that map to the somatotopic structure of the internal pallidum. We further highlight that modulation of the pallidofugal main axis of the basal ganglia may be optimal for treatment of cervical dystonia, while pallidothalamic bundles account for effects in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in form of connectivity to cerebellum and somatomotor cortex. Our results suggest a multi-level model that could account for effectivity of treatment in cervical and generalized dystonia and could potentially help guide DBS programming and surgery, in the future.

2018 ◽  
Author(s):  
Andreas Horn ◽  
Ningfei Li ◽  
Till A Dembek ◽  
Ari Kappel ◽  
Chadwick Boulay ◽  
...  

AbstractDeep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural / functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient’s preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the method of choice.This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.


2008 ◽  
Vol 100 (5) ◽  
pp. 2549-2563 ◽  
Author(s):  
Matthew D. Johnson ◽  
Cameron C. McIntyre

Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) is an effective therapy option for controlling the motor symptoms of medication-refractory Parkinson's disease and dystonia. Despite the clinical successes of GPi DBS, the precise therapeutic mechanisms are unclear and questions remain on the optimal electrode placement and stimulation parameter selection strategies. In this study, we developed a three-dimensional computational model of GPi-DBS in nonhuman primates to investigate how membrane channel dynamics, synaptic inputs, and axonal collateralization contribute to the neural responses generated during stimulation. We focused our analysis on three general neural elements that surround GPi-DBS electrodes: GPi somatodendritic segments, GPi efferent axons, and globus pallidus pars externa (GPe) fibers of passage. During high-frequency electrical stimulation (136 Hz), somatic activity in the GPi showed interpulse excitatory phases at 1–3 and 4–5.5 ms. When including stimulation-induced GABAA and AMPA receptor dynamics into the model, the somatic firing patterns continued to be entrained to the stimulation, but the overall firing rate was reduced (78.7 to 25.0 Hz, P < 0.001). In contrast, axonal output from GPi neurons remained largely time-locked to each pulse of the stimulation train. Similar entrainment was also observed in GPe efferents, a majority of which have been shown to project through GPi en route to the subthalamic nucleus. The models suggest that pallidal DBS may have broader network effects than previously realized and the modes of therapy may depend on the relative proportion of GPi and/or GPe efferents that are directly affected by the stimulation.


2019 ◽  
Vol 9 (3) ◽  
pp. 64 ◽  
Author(s):  
Edgar Garcia-Rill ◽  
Alan Tackett ◽  
Stephanie Byrum ◽  
Renny Lan ◽  
Samuel Mackintosh ◽  
...  

Our discovery of low-threshold stimulation-induced locomotion in the pedunculopontine nucleus (PPN) led to the clinical use of deep brain stimulation (DBS) for the treatment of disorders such as Parkinson’s disease (PD) that manifest gait and postural disorders. Three additional major discoveries on the properties of PPN neurons have opened new areas of research for the treatment of motor and arousal disorders. The description of (a) electrical coupling, (b) intrinsic gamma oscillations, and (c) gene regulation in the PPN has identified a number of novel therapeutic targets and methods for the treatment of a number of neurological and psychiatric disorders. We first delve into the circuit, cellular, intracellular, and molecular organization of the PPN, and then consider the clinical results to date on PPN DBS. This comprehensive review will provide valuable information to explain the network effects of PPN DBS, point to new directions for treatment, and highlight a number of issues related to PPN DBS.


Neurology ◽  
2017 ◽  
Vol 89 (19) ◽  
pp. 1944-1950 ◽  
Author(s):  
Matthew A. Brodsky ◽  
Shannon Anderson ◽  
Charles Murchison ◽  
Mara Seier ◽  
Jennifer Wilhelm ◽  
...  

Objective:To compare motor and nonmotor outcomes at 6 months of asleep deep brain stimulation (DBS) for Parkinson disease (PD) using intraoperative imaging guidance to confirm electrode placement vs awake DBS using microelectrode recording to confirm electrode placement.Methods:DBS candidates with PD referred to Oregon Health & Science University underwent asleep DBS with imaging guidance. Six-month outcomes were compared to those of patients who previously underwent awake DBS by the same surgeon and center. Assessments included an “off”-levodopa Unified Parkinson’s Disease Rating Scale (UPDRS) II and III, the 39-item Parkinson's Disease Questionnaire, motor diaries, and speech fluency.Results:Thirty participants underwent asleep DBS and 39 underwent awake DBS. No difference was observed in improvement of UPDRS III (+14.8 ± 8.9 vs +17.6 ± 12.3 points, p = 0.19) or UPDRS II (+9.3 ± 2.7 vs +7.4 ± 5.8 points, p = 0.16). Improvement in “on” time without dyskinesia was superior in asleep DBS (+6.4 ± 3.0 h/d vs +1.7 ± 1.2 h/d, p = 0.002). Quality of life scores improved in both groups (+18.8 ± 9.4 in awake, +8.9 ± 11.5 in asleep). Improvement in summary index (p = 0.004) and subscores for cognition (p = 0.011) and communication (p < 0.001) were superior in asleep DBS. Speech outcomes were superior in asleep DBS, both in category (+2.77 ± 4.3 points vs −6.31 ± 9.7 points (p = 0.0012) and phonemic fluency (+1.0 ± 8.2 points vs −5.5 ± 9.6 points, p = 0.038).Conclusions:Asleep DBS for PD improved motor outcomes over 6 months on par with or better than awake DBS, was superior with regard to speech fluency and quality of life, and should be an option considered for all patients who are candidates for this treatment.Clinicaltrials.gov identifier:NCT01703598.Classification of evidence:This study provides Class III evidence that for patients with PD undergoing DBS, asleep intraoperative CT imaging–guided implantation is not significantly different from awake microelectrode recording–guided implantation in improving motor outcomes at 6 months.


2009 ◽  
Vol 110 (6) ◽  
pp. 1283-1290 ◽  
Author(s):  
Ludvic Zrinzo ◽  
Arjen L. J. van Hulzen ◽  
Alessandra A. Gorgulho ◽  
Patricia Limousin ◽  
Michiel J. Staal ◽  
...  

Object The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy. Methods The targeting error during electrode placement was assessed in 162 electrodes implanted in 109 patients at 2 centers. The targeting error was calculated as the shortest distance from the intended stereotactic coordinates to the final electrode trajectory as defined on postoperative stereotactic imaging. The trajectory of these electrodes in relation to the lateral ventricles was also analyzed on postoperative images. Results The trajectory of 68 electrodes involved the ventricle. The targeting error for all electrodes was calculated: the mean ± SD and the 95% CI of the mean was 1.5 ± 1.0 and 0.1 mm, respectively. The same calculations for targeting error for electrode trajectories that did not involve the ventricle were 1.2 ± 0.7 and 0.1 mm. A significantly larger targeting error was seen in trajectories that involved the ventricle (1.9 ± 1.1 and 0.3 mm; p < 0.001). Thirty electrodes (19%) required multiple passes before final electrode implantation on the basis of physiological and/or clinical observations. There was a significant association between an increased requirement for multiple brain passes and ventricular involvement in the trajectory (p < 0.01). Conclusions Planning an electrode trajectory that avoids the ventricles is a simple precaution that significantly improves the accuracy of anatomical targeting during electrode placement for deep brain stimulation. Avoidance of the ventricles appears to reduce the need for multiple passes through the brain to reach the desired target as defined by clinical and physiological observations.


2014 ◽  
Vol 20 (1) ◽  
pp. 131-133 ◽  
Author(s):  
Malgorzata Dec ◽  
Marcin Tutaj ◽  
Monika Rudzińska ◽  
Andrzej Szczudlik ◽  
Henryk Koziara ◽  
...  

2020 ◽  
Vol 78 (9) ◽  
pp. 586-592
Author(s):  
Clarice LISTIK ◽  
Eduardo LISTIK ◽  
Rubens Gisbert CURY ◽  
Egberto Reis BARBOSA ◽  
Manoel Jacobsen TEIXEIRA ◽  
...  

ABSTRACT Background: Dystonia is a heterogeneous disorder that, when refractory to medical treatment, may have a favorable response to deep brain stimulation (DBS). A practical way to have an overview of a research domain is through a bibliometric analysis, as it makes it more accessible for researchers and others outside the field to have an idea of its directions and needs. Objective: To analyze the 100 most cited articles in the use of DBS for dystonia treatment in the last 30 years. Methods: The research protocol was performed in June 2019 in Elsevier’s Scopus database, by retrieving the most cited articles regarding DBS in dystonia. We analyzed authors, year of publication, country, affiliation, and targets of DBS. Results: Articles are mainly published in Movement Disorders (19%), Journal of Neurosurgery (9%), and Neurology (9%). European countries offer significant contributions (57% of our sample). France (192.5 citations/paper) and Germany (144.1 citations/paper) have the highest citation rates of all countries. The United States contributes with 31% of the articles, with 129.8 citations/paper. The publications are focused on General outcomes (46%), followed by Long-term outcomes (12.5%), and Complications (11%), and the leading type of dystonia researched is idiopathic or inherited, isolated, segmental or generalized dystonia, with 27% of articles and 204.3 citations/paper. Conclusions: DBS in dystonia research is mainly published in a handful of scientific journals and focused on the outcomes of the surgery in idiopathic or inherited, isolated, segmental or generalized dystonia, and with globus pallidus internus as the main DBS target.


Sign in / Sign up

Export Citation Format

Share Document