scholarly journals Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging

2018 ◽  
Author(s):  
Andreas Horn ◽  
Ningfei Li ◽  
Till A Dembek ◽  
Ari Kappel ◽  
Chadwick Boulay ◽  
...  

AbstractDeep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural / functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient’s preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the method of choice.This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.

2021 ◽  
Author(s):  
Andreas Horn ◽  
Martin Reich ◽  
Siobhan Ewert ◽  
Ningfei Li ◽  
Bassam Al-Fatly ◽  
...  

Dystonia is a debilitating disease with few conservative treatment options but many types of isolated dystonia can be effectively treated using deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations between optimal stimulation sites and potential network effects in the two types of dystonia have not been carried out. Here, we retrospectively investigate clinical results following DBS for cervical and generalized dystonia in a multi-center cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce a novel approach to map optimal stimulation sites to anatomical space. Second, we analyse stimulation in context of a detailed pathway model of the subcortex to investigate the modulation of which tracts accounts for optimal clinical improvements. Third, we investigate stimulation in context of a broad-lense whole-brain functional connectome to illustrate potential multisynaptic network effects. Finally, we construct a joint model using local, tract- and network-based effects to explain variance in clinical outcomes in cervical and generalized dystonia. Our results show marked differences in optimal stimulation sites that map to the somatotopic structure of the internal pallidum. We further highlight that modulation of the pallidofugal main axis of the basal ganglia may be optimal for treatment of cervical dystonia, while pallidothalamic bundles account for effects in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in form of connectivity to cerebellum and somatomotor cortex. Our results suggest a multi-level model that could account for effectivity of treatment in cervical and generalized dystonia and could potentially help guide DBS programming and surgery, in the future.


Neurology ◽  
2017 ◽  
Vol 89 (19) ◽  
pp. 1944-1950 ◽  
Author(s):  
Matthew A. Brodsky ◽  
Shannon Anderson ◽  
Charles Murchison ◽  
Mara Seier ◽  
Jennifer Wilhelm ◽  
...  

Objective:To compare motor and nonmotor outcomes at 6 months of asleep deep brain stimulation (DBS) for Parkinson disease (PD) using intraoperative imaging guidance to confirm electrode placement vs awake DBS using microelectrode recording to confirm electrode placement.Methods:DBS candidates with PD referred to Oregon Health & Science University underwent asleep DBS with imaging guidance. Six-month outcomes were compared to those of patients who previously underwent awake DBS by the same surgeon and center. Assessments included an “off”-levodopa Unified Parkinson’s Disease Rating Scale (UPDRS) II and III, the 39-item Parkinson's Disease Questionnaire, motor diaries, and speech fluency.Results:Thirty participants underwent asleep DBS and 39 underwent awake DBS. No difference was observed in improvement of UPDRS III (+14.8 ± 8.9 vs +17.6 ± 12.3 points, p = 0.19) or UPDRS II (+9.3 ± 2.7 vs +7.4 ± 5.8 points, p = 0.16). Improvement in “on” time without dyskinesia was superior in asleep DBS (+6.4 ± 3.0 h/d vs +1.7 ± 1.2 h/d, p = 0.002). Quality of life scores improved in both groups (+18.8 ± 9.4 in awake, +8.9 ± 11.5 in asleep). Improvement in summary index (p = 0.004) and subscores for cognition (p = 0.011) and communication (p < 0.001) were superior in asleep DBS. Speech outcomes were superior in asleep DBS, both in category (+2.77 ± 4.3 points vs −6.31 ± 9.7 points (p = 0.0012) and phonemic fluency (+1.0 ± 8.2 points vs −5.5 ± 9.6 points, p = 0.038).Conclusions:Asleep DBS for PD improved motor outcomes over 6 months on par with or better than awake DBS, was superior with regard to speech fluency and quality of life, and should be an option considered for all patients who are candidates for this treatment.Clinicaltrials.gov identifier:NCT01703598.Classification of evidence:This study provides Class III evidence that for patients with PD undergoing DBS, asleep intraoperative CT imaging–guided implantation is not significantly different from awake microelectrode recording–guided implantation in improving motor outcomes at 6 months.


2009 ◽  
Vol 110 (6) ◽  
pp. 1283-1290 ◽  
Author(s):  
Ludvic Zrinzo ◽  
Arjen L. J. van Hulzen ◽  
Alessandra A. Gorgulho ◽  
Patricia Limousin ◽  
Michiel J. Staal ◽  
...  

Object The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy. Methods The targeting error during electrode placement was assessed in 162 electrodes implanted in 109 patients at 2 centers. The targeting error was calculated as the shortest distance from the intended stereotactic coordinates to the final electrode trajectory as defined on postoperative stereotactic imaging. The trajectory of these electrodes in relation to the lateral ventricles was also analyzed on postoperative images. Results The trajectory of 68 electrodes involved the ventricle. The targeting error for all electrodes was calculated: the mean ± SD and the 95% CI of the mean was 1.5 ± 1.0 and 0.1 mm, respectively. The same calculations for targeting error for electrode trajectories that did not involve the ventricle were 1.2 ± 0.7 and 0.1 mm. A significantly larger targeting error was seen in trajectories that involved the ventricle (1.9 ± 1.1 and 0.3 mm; p < 0.001). Thirty electrodes (19%) required multiple passes before final electrode implantation on the basis of physiological and/or clinical observations. There was a significant association between an increased requirement for multiple brain passes and ventricular involvement in the trajectory (p < 0.01). Conclusions Planning an electrode trajectory that avoids the ventricles is a simple precaution that significantly improves the accuracy of anatomical targeting during electrode placement for deep brain stimulation. Avoidance of the ventricles appears to reduce the need for multiple passes through the brain to reach the desired target as defined by clinical and physiological observations.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hemmings Wu ◽  
Hartwin Ghekiere ◽  
Dorien Beeckmans ◽  
Tim Tambuyzer ◽  
Kris van Kuyck ◽  
...  

Abstract Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability and affordability. Our open-source closed-loop DBS system is effective and warrants further research using open-source hardware for closed-loop neuromodulation.


2011 ◽  
Vol 32 (10) ◽  
pp. 1963-1968 ◽  
Author(s):  
J.S. Anderson ◽  
H.S. Dhatt ◽  
M.A. Ferguson ◽  
M. Lopez-Larson ◽  
L.E. Schrock ◽  
...  

2021 ◽  
Vol 429 ◽  
pp. 118288
Author(s):  
Luigi Albano ◽  
Federica Agosta ◽  
Silvia Basaia ◽  
Camilla Cividini ◽  
Tanja Stojkovic ◽  
...  

2020 ◽  
pp. 119-124
Author(s):  
Mónica M. Kurtis ◽  
Javier R. Pérez-Sánchez

Parkinson disease (PD) patients who have undergone surgery and develop festinating gait and postural instability are challenging to diagnose and treat. This chapter describes the case of an early-onset PD patient who underwent deep brain stimulation (DBS) 4 years after disease onset due to motor and nonmotor fluctuations and medication side effects (impulse control disorder). A year after surgery, the patient developed gait and balance problems in the on-medication/on-stimulation states that resolved after turning stimulation off or withdrawing medication for 12 hours. However, other symptoms, including as bradykinesia, rigidity, and tremor, reappeared. Troubleshooting involved magnetic resonance imaging to evaluate electrode placement and complete screening of all contacts with successful reprogramming and medication adjustments. The pathophysiology of balance problems is discussed, including the synergistic effects of subthalamic nucleus DBS and dopaminergic treatment, which may lead to increased postural sway and lower limb dystonia.


Sign in / Sign up

Export Citation Format

Share Document