scholarly journals Early Life Adversity in Male Mice Sculpts Reward Circuits.

2021 ◽  
Author(s):  
Kara M Wendel ◽  
Annabel K Short ◽  
Brenda P Noarbe ◽  
Elizabeth Haddad ◽  
Anton M Palma ◽  
...  

Early life adversity (ELA) comprises a wide variety of negative experiences during early life and has been linked to cognitive impairments, reduced experiences of pleasure (anhedonia), and other long-term consequences implying that ELA impacts the reward circuitry. In this study, we focused on the projections from the dorsal raphe (DR) to the ventral tegmental area (VTA) and on to the nucleus accumbens (NAcc), an important pathway within the reward circuit. We hypothesized that ELA alters connectivity within the DR-VTA-NAcc pathway, manifested behaviorally as anhedonia in adulthood. We used the limited bedding and nesting model to induce ELA in mice and measured reward-related behaviors in adulthood using the three-chamber social interaction and sucrose preference tests. High resolution ex vivo diffusion tensor imaging (DTI) was acquired and processed for regional DTI metrics, including tractography to assess circuit organization. We found brain-wide changes in radial diffusivity (RD) and altered connectivity of the reward circuit in the ELA group. DR-VTA-NAcc circuit tractography and axial diffusivity (AD) along this tract exhibited dispersed organization where AD was increased in the VTA segment. Behaviorally, ELA elicited an anhedonic phenotype in adulthood with decreased direct social approach and time spent with peer but no overt differences in sucrose preference test. Our findings suggest that reward circuits, assessed using DTI, are altered following ELA and that these changes may drive enduring reward deficits.

2011 ◽  
Vol 115 (4) ◽  
pp. 812-821 ◽  
Author(s):  
Jing Wang ◽  
Yossef Goffer ◽  
Duo Xu ◽  
David S. Tukey ◽  
D. B. Shamir ◽  
...  

Background Chronic pain is associated with depression. In rodents, pain is often assessed by sensory hypersensitivity, which does not sufficiently measure affective responses. Low-dose ketamine has been used to treat both pain and depression, but it is not clear whether ketamine can relieve depression associated with chronic pain and whether this antidepressant effect depends on its antinociceptive properties. Methods The authors examined whether the spared nerve injury model of neuropathic pain induces depressive behavior in rats, using sucrose preference test and forced swim test, and tested whether a subanesthetic dose of ketamine treats spared nerve injury-induced depression. Results Spared nerve injury-treated rats, compared with control rats, showed decreased sucrose preference (0.719 ± 0.068 (mean ± SEM) vs. 0.946 ± 0.010) and enhanced immobility in the forced swim test (107.3 ± 14.6s vs. 56.2 ± 12.5s). Further, sham-operated rats demonstrated depressive behaviors in the acute postoperative period (0.790 ± 0.062 on postoperative day 2). A single subanesthetic dose of ketamine (10 mg/kg) did not alter spared nerve injury-induced hypersensitivity; however, it treated spared nerve injury-associated depression-like behaviors (0.896 ± 0.020 for ketamine vs. 0.663 ± 0.080 for control rats 1 day after administration; 0.858 ± 0.017 for ketamine vs. 0.683 ± 0.077 for control rats 5 days after administration). Conclusions Chronic neuropathic pain leads to depression-like behaviors. The postoperative period also confers vulnerability to depression, possibly due to acute pain. Sucrose preference test and forced swim test may be used to compliment sensory tests for assessment of pain in animal studies. Low-dose ketamine can treat depression-like behaviors induced by chronic neuropathic pain.


CNS Spectrums ◽  
2014 ◽  
Vol 20 (4) ◽  
pp. 337-345 ◽  
Author(s):  
Bonnie Goff ◽  
Nim Tottenham

Early-life adversity is a well-established risk factor for the development of depression later in life. Here we discuss the relationship between early-life adversity and depression, focusing specifically on effects of early-life caregiver deprivation on alterations in the neural and behavioral substrates of reward-processing. We also examine vulnerability to depression within the context of sensitive periods of neural development and the timing of adverse exposure. We further review the development of the ventral striatum, a limbic structure implicated in reward processing, and its role in depressive outcomes following early-life adversity. Finally, we suggest a potential neurobiological mechanism linking early-life adversity and altered ventral striatal development. Together these findings may help provide further insight into the role of reward circuitry dysfunction in psychopathological outcomes in both clinical and developmental populations.


2018 ◽  
Vol 13 (7) ◽  
pp. 1686-1698 ◽  
Author(s):  
Meng-Ying Liu ◽  
Chun-Yu Yin ◽  
Li-Juan Zhu ◽  
Xian-Hui Zhu ◽  
Chu Xu ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Sophia C. Levis ◽  
Stephen V. Mahler ◽  
Tallie Z. Baram

Opioid use disorder (OUD) rarely presents as a unitary psychiatric condition, and the comorbid symptoms likely depend upon the diverse risk factors and mechanisms by which OUD can arise. These factors are heterogeneous and include genetic predisposition, exposure to prescription opioids, and environmental risks. Crucially, one key environmental risk factor for OUD is early life adversity (ELA). OUD and other substance use disorders are widely considered to derive in part from abnormal reward circuit function, which is likely also implicated in comorbid mental illnesses such as depression, bipolar disorder, and schizophrenia. ELA may disrupt reward circuit development and function in a manner predisposing to these disorders. Here, we describe new findings addressing the effects of ELA on reward circuitry that lead to OUD and comorbid disorders, potentially via shared neural mechanisms. We discuss some of these OUD-related problems in both humans and animals. We also highlight the increasingly apparent, crucial contribution of biological sex in mediating the range of ELA-induced disruptions of reward circuitry which may confer risk for the development of OUD and comorbid neuropsychiatric disorders.


Author(s):  
DINESH DHINGRA ◽  
SUDHA

Objectives: The present study was undertaken to investigate the antidepressant potential of trans-anethole in unstressed and stressed male mice. Methods: Swiss albino male mice were exposed to chronic unpredictable mild stress for 21 successive days. Simultaneously, trans-anethole (12.5 mg/kg, 25 mg/kg, and 50 mg/kg) and fluoxetine (20 mg/kg) per se were administered for 21 successive days to separate groups of unstressed and stressed mice. The effect of drugs on depressive-like behavior of mice was tested by tail suspension test (TST) and sucrose preference test. Results: Trans-anethole (25 mg/kg) and fluoxetine significantly decreased the immobility period of unstressed and stressed mice in TST as compared to their respective control. These drugs significantly restored the reduced sucrose preference (%) in stressed mice. Trans-anethole did not show any significant effect on locomotor activity of mice. Antidepressant-like activity of trans-anethole (25 mg/kg) was found to be comparable to fluoxetine. Trans-anethole and fluoxetine significantly inhibited brain monoamine oxidase-A (MAO-A) activity, decreased plasma nitrite, brain malondialdehyde, and increased brain reduced glutathione levels and catalase activity in unstressed and stressed mice. The drugs significantly reversed stress-induced increase in plasma corticosterone levels. Conclusion: Trans-anethole produced significant antidepressant-like activity in unstressed and stressed mice, possibly through inhibition of brain MAO-A activity and alleviation of oxidative stress. Reversal of stress-induced increase in plasma corticosterone levels might also be responsible for antidepressant-like activity of trans-anethole in stressed mice.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. 59-60
Author(s):  
J Hanuschak ◽  
M P Louis-Auguste ◽  
G De Palma ◽  
E Verdu ◽  
R Anglin ◽  
...  

Abstract Background Major depressive disorder (MDD) affects approximately 4.4% of the global population. Despite its high prevalence, little is known about the mechanisms underlying this disorder. Recent studies in both humans and rodents have suggested that the intestinal microbiota may play a role in depression. Altered microbiota composition has been found in a subset of MDD patients. Preclinical studies have suggested that fecal microbiota transplant using pooled MDD patient samples can induce depressive-like behaviour in rodents. We have previously shown that the use of different microbiota donors with irritable bowel syndrome results in the induction of different phenotypes in recipient mice. Thus, we have hypothesized that pooling microbiota samples abrogates features that are unique to individual donors. Aims (1) Investigate whether the transfer of individual MDD patient microbiota can induce depressive-like behaviour in germ-free (GF) mice (2) Identify features of individual MDD patient microbiota that are associated with the depressive-like phenotype Methods GF NIH Swiss mice of both sexes (min. n=10 per group, total n=110) were colonized with either fecal microbiota from a single donor, MDD patient (MDD1-4) or matched healthy control (HC1-4), or pooled fecal microbiota from MDD1-4 or HC1-4. Mouse behaviour was assessed, using the open field test, three chamber sociability assay, tail suspension test, and sucrose preference test. Stool samples were collected throughout the experiment for 16S rRNA gene sequencing. Results Mice colonized with microbiota from patient MDD1 exhibited depressive-like behaviour, as assessed by the sucrose preference test and sociability assay, when compared to mice colonized with HC1 microbiota. This was not true for mice colonized with individual microbiota from the other three patients (MDD2-4) or with pooled MDD microbiota. Comparative analysis of the 16S data revealed a significant difference in Faith’s Phylogenetic Diversity between MDD1 microbiota and pooled MDD microbiota. Four bacterial species were found to be significantly associated with the depressive-like phenotype in mice: Bacteroides acidifaciens, Bacteroides ovatus, unclassified species of Phascolarctobacterium (Veillonellacae family), and Eggerthella lenta. The relative abundances of these species did not differ significantly between the two pooled groups. Conclusions Microbiota from some, but not all, MDD patients can induce a depressive-like phenotype in GF mice. The ability to induce depressive-like behaviour in GF mice is lost when microbiota from multiple patients is pooled. Specific bacterial species may be responsible for the successful transfer of the depressive-like phenotype to mice. Funding Agencies NIH


2021 ◽  
Vol 22 (14) ◽  
pp. 7483
Author(s):  
Vlad Dionisie ◽  
Adela Magdalena Ciobanu ◽  
Vlad Alexandru Toma ◽  
Mihnea Costin Manea ◽  
Ioana Baldea ◽  
...  

In recent years, escitalopram (ESC) has been suggested to have different mechanisms of action beyond its well known selective serotonin reuptake inhibition. The aim of this study is to investigate the effects of escitalopram on oxidative stress, apoptosis, brain-derived neurotrophic factor (BDNF), Methyl-CpG-binding protein 2 (MeCP2), and oligodendrocytes number in the brain of chronic unpredictable mild stress-induced depressed rats. The animals were randomised in four groups (8 in each group): control, stress, stress + ESC 5 and stress + ESC 5/10. ESC was administered for 42 days in a fixed dose (5 mg/kg b.w.) or in an up-titration regimen (21 days ESC 5 mg/kg b.w. then 21 days ESC 10 mg/kg b.w.). Sucrose preference test (SPT) and elevated plus maze (EPM) were also performed. ESC improved the percentage of sucrose preference, locomotion and anxiety. ESC5/10 reduced the oxidative damage in the hippocampus and improved the antioxidant defence in the hippocampus and frontal lobe. ESC5/10 lowered caspase 3 activity in the hippocampus. Escitalopram had a modulatory effect on BDNF and the number of oligodendrocytes in the hippocampus and frontal lobe and also improved the MeCP2 expressions. The results confirm the multiple pathways implicated in the pathogenesis of depression and suggest that escitalopram exerts an antidepressant effect via different intricate mechanisms.


Sign in / Sign up

Export Citation Format

Share Document