scholarly journals Airway-specific autoantibodies identify a subset of patients with fibrotic interstitial lung disease

Author(s):  
Karim Boustani ◽  
Poonam Ghai ◽  
Rachele Invernizzi ◽  
Richard J. Hewitt ◽  
Toby M. Maher ◽  
...  

Fibrotic interstitial lung disease (fILD) has previously been associated with the presence of autoantibody. While studies have focused on systemic autoimmunity, the role of local autoantibodies in the airway remains unknown. We therefore extensively characterised the airway and peripheral autoantibody profiles in patients with fILD and assessed association with disease severity and outcome. Bronchoalveolar lavage (BAL) was collected from a cohort of fILD patients and total airway antibody concentrations were quantified. An autoantigen microarray was used to measure IgG and IgA autoantibodies against 124 autoantigens in BAL from 40 idiopathic pulmonary fibrosis (IPF), 20 chronic hypersensitivity pneumonitis (CHP), 20 connective tissue disease-associated ILD (CTD-ILD) patients and 20 controls. A subset of patients with fILD but not healthy controls had a local autoimmune signature in their airways that was not present systemically, regardless of disease. The proportion of patients with IPF with a local autoantibody signature was comparable to that of CTD-ILD, which has a known autoimmune pathology, identifying a potentially novel subset of patients. The presence of an airway autoimmune signature was not associated with reduced survival probability or changes in lung function in the cohort as a whole. Patients with IPF had increased airway total IgA and IgG1 while subjects with CHP had increased airway IgA, IgG1 and IgG4. In patients with CHP, increased airway total IgA was associated with reduced survival probability. The presence of airway autoantibodies identifies a unique subset of patients with fILD and the mechanisms by which these autoantibodies contribute to disease requires further investigation.

2021 ◽  
pp. 00481-2021
Author(s):  
Karim Boustani ◽  
Poonam Ghai ◽  
Rachele Invernizzi ◽  
Richard J. Hewitt ◽  
Toby M. Maher ◽  
...  

BackgroundFibrotic interstitial lung disease (fILD) has previously been associated with the presence of autoantibody. While studies have focused on systemic autoimmunity, the role of local autoantibodies in the airways remains unknown. We therefore extensively characterised the airway and peripheral autoantibody profiles in patients with fILD and assessed association with disease severity and outcome.MethodsBronchoalveolar lavage (BAL) was collected from a cohort of fILD patients and total BAL antibody concentrations were quantified. An autoantigen microarray was used to measure IgG and IgA autoantibodies against 122 autoantigens in BAL from 40 idiopathic pulmonary fibrosis (IPF), 20 chronic hypersensitivity pneumonitis (CHP), 20 connective tissue disease-associated ILD (CTD-ILD) patients and 20 controls.ResultsA subset of patients with fILD but not healthy controls had a local autoimmune signature in their BAL that was not present systemically, regardless of disease. The proportion of patients with IPF with a local autoantibody signature was comparable to that of CTD-ILD, which has a known autoimmune pathology, identifying a potentially novel subset of patients. The presence of an airway autoimmune signature was not associated with reduced survival probability or changes in lung function in the cohort as a whole. Patients with IPF had increased BAL total IgA and IgG1 while subjects with CHP had increased BAL IgA, IgG1 and IgG4. In patients with CHP, increased BAL total IgA was associated with reduced survival probability.ConclusionAirway autoantibodies that aren't present systemically identify a group of patients with fILD and the mechanisms by which these autoantibodies contribute to disease requires further investigation.


2021 ◽  
Author(s):  
Yimin Li ◽  
Jun Xu ◽  
Zijun Li ◽  
Yixue Guo ◽  
Xiaoyan Xing ◽  
...  

Objective: The clinical relevance and pathogenic role of gut microbiome in both myositis and its associated interstitial lung disease (ILD) are still unclear. The purpose of this study was to investigate the role of gut microbiome in myositis through comprehensive metagenomic-wide association studies (MWAS). Methods We conducted MWAS of the myositis gut microbiome in a Chinese cohort by using whole-genome shotgun sequencing of high depth, including 30 myositis patients and 31 healthy controls (HC). Among the myositis patients, 11 developed rapidly progressive interstitial lung disease (RP-ILD) and 10 had chronic ILD (C-ILD). Our MWAS consisted of both overall distribution level of the bacteria analysis and pathway analysis. Receiver operating characteristic curve (ROC) analysis was performed to identify novel gut bacterial species associated with myositis or myositis-associated RP-ILD, and to evaluate their diagnostic values. Results Apparent discrepancy in β diversities of metagenome was found in the comparison of myositis and HC, RP-ILD and C-ILD in myositis. Analysis for overall distribution level of the bacteria showed Alistipes onderdonkii, Parabacteroides distasonis and Escherichia coli were upregulated, Lachnospiraceae bacterium GAM79, Roseburia intestinalis, and Akkermansia muciniphila were downregulated in patients with myositis compared to HC. Bacteroides thetaiotaomicron, Parabacteroides distasonis and Escherichia coli were upregulated, Bacteroides A1C1 and Bacteroides xylanisolvens were downregulated in RP-ILD cases compared with C-ILD cases. A variety of biological pathways related to metabolism were enriched in the myositis and HC, RP-ILD and C-ILD comparison. And in the analyses for microbial contribution in metagenomic biological pathways, we have found that E. coli played an important role in the pathway expression in both myositis group and myositis-associated RP-ILD group. Anti-PL-12 antibody, anti-Ro-52 antibody, and anti-EJ antibody were found to have positive correlation with bacterial diversity (Shannon-wiener diversity index and Chao1, richness estimator) between myositis group and control groups. The combination of E. coli and R. intestinalis could distinguish myositis group from Healthy controls effectively. R. intestinalis can also be applied in the distinguishment of RP-ILD group vs. C-ILD group in myositis paitents. Conclusion Our MWAS study first revealed the link between gut microbiome and pathgenesis of myositis, which may help us understand the role of gut microbiome in the etiology of myositis and myositis-associated RP-ILD.


2020 ◽  
Vol 144 (12) ◽  
pp. 1509-1516
Author(s):  
Andrew Churg

Context.— Various pulmonary diseases can produce centrilobular (peribronchiolar) fibrosis, which may be isolated or associated with other patterns of more diffuse fibrosis. The major forms of interstitial lung disease in which centrilobular fibrosis is found are fibrotic (chronic) hypersensitivity pneumonitis, connective tissue disease–associated interstitial lung disease, and (a disputed issue) usual interstitial pneumonia/idiopathic interstitial fibrosis. Objective.— To review recent literature that addresses separation of these entities. Data Sources.— Data comprised recent publications. Conclusions.— In a specially constructed multidisciplinary discussion exercise, it was found that peribronchiolar metaplasia affecting more than half the bronchioles or more than 2 foci of peribronchiolar metaplasia per square centimeter of biopsy area was strongly associated with a confident diagnosis of fibrotic hypersensitivity pneumonitis. Giant cells or granulomas were only found in cases with a greater than 50% diagnostic confidence in hypersensitivity pneumonitis. Conversely, greater numbers of fibroblast foci per square centimeter and increasing measured amounts of subpleural fibrosis favored a diagnosis of usual interstitial pneumonia. Recent data also suggest that centrilobular fibrosis can be found in usual interstitial pneumonia, although the presence of centrilobular fibrosis statistically favors an alternate diagnosis. Connective tissue disease is a major confounder because many patterns are very similar to fibrotic hypersensitivity pneumonitis or usual interstitial pneumonia. Genetic abnormalities, such as the MUC5B minor allele overlap, in these conditions and at this point cannot be used for discrimination. Thus, the separation of fibrotic hypersensitivity pneumonitis and usual interstitial pneumonia remains a difficult problem. Accurate biopsy diagnosis of all of these diseases requires correlation with imaging and clinical findings, and is crucial for treatment.


2020 ◽  
Author(s):  
Haruhiko Furusawa ◽  
Jonathan H. Cardwell ◽  
Tsukasa Okamoto ◽  
Avram D. Walts ◽  
Iain R. Konigsberg ◽  
...  

2020 ◽  
Vol 202 (10) ◽  
pp. 1430-1444
Author(s):  
Haruhiko Furusawa ◽  
Jonathan H. Cardwell ◽  
Tsukasa Okamoto ◽  
Avram D. Walts ◽  
Iain R. Konigsberg ◽  
...  

2020 ◽  
Vol 16 (1) ◽  
pp. 18-27
Author(s):  
Manzoor M. Khan

Interstitial lung disease, a term for a group of disorders, causes lung fibrosis, is mostly refractory to treatments and has a high death rate. After diagnosis the survival is up to 3 years but in some cases the patients live much longer. It involves a heterogenous group of lung diseases that exhibit progressive and irreversible destruction of the lung due to the formation of scars. This results in lung malfunction, disruption of gas exchange, and eventual death because of respiratory failure. The etiology of lung fibrosis is mostly unknown with a few exceptions. The major characteristics of the disease are comprised of injury of epithelial type II cells, increased apoptosis, chronic inflammation, monocytic and lymphocytic infiltration, accumulation of myofibroblasts, and inability to repair damaged tissue properly. These events result in abnormal collagen deposition and scarring. The inflammation process is mild, and the disease is primarily fibrotic driven. Immunosuppressants do not treat the disease but the evidence is evolving that both innate and acquired immune responses a well as the cytokines contribute to at least early progression of the disease. Furthermore, mediators of inflammation including cytokines are involved throughout the process of lung fibrosis. The diverse clinical outcome of the disease is due to different pattern of inflammatory markers. Nonetheless, the development of novel therapeutic strategies requires better understanding of the role of the immune response. This review highlights the role of the immune response in interstitial lung disease and considers the therapeutic strategies based on these observations. For this review several literature data sources were used to assess the role of the immune response in interstitial lung disease and to evaluate the possible therapeutic strategies for the disease.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.3-1047
Author(s):  
V. Pulito-Cueto ◽  
S. Remuzgo Martinez ◽  
F. Genre ◽  
B. Atienza-Mateo ◽  
V. M. Mora-Cuesta ◽  
...  

Background:Interstitial lung disease (ILD) is one of the most significant complications of connective tissue diseases (CTD), leading to an increase of the morbidity and mortality in patients with CTD [1]. A specific T cell subset termed angiogenic T cells (TAng), that promote endothelial repair and revascularization, have been involved in the pathogenesis of CTD [2-4]. However, to the best of our knowledge, no information regarding the role of TAng in CTD-ILD+ is available.Objectives:To study, for the first time, the potential role of TAng related to vascular damage in CTD-ILD+.Methods:Peripheral venous blood was collected from 40 patients with CTD-ILD+ and three comparative groups: 44 CTD-ILD- patients, 21 idiopathic pulmonary fibrosis (IPF) patients and 20 healthy controls (HC). All subjects were recruited from the Rheumatology and Pneumology departments of Hospital Universitario Marqués de Valdecilla, Santander, Spain. Quantification of TAng was performed by flow cytometry. TAng were considered as triple-positive for CD3, CD31 and CXCR4.Results:Patients with CTD-ILD+ exhibited a significantly lower TAng frequency than CTD-ILD- patients (p<0.001). Similar results were obtained when patients with CTD-ILD+ were compared with HC (p=0.004) although no difference was observed between CTD-ILD+ and IPF. In addition, a significant increase of TAng frequency was shown in patients with CTD-ILD- in relation to IPF patients (p<0.001), while no difference was observed between CTD-ILD- and HC.Conclusion:Our results reveal a decrease of TAng frequency related to vascular damage in CTD-ILD+. Furthermore, we disclose that the presence of ILD is associated with lower TAng frequency.References:[1]Expert Rev Clin Immunol 2018;14(1):69-82.[2]Circulation 2007;116(15):1671-82.[3]Ann Rheum Dis 2015 74(5):921-7.[4]PLoS One 2017;12(8):e0183102.Acknowledgements:Personal funds, VP-C: PREVAL18/01 (IDIVAL); SR-M: RD16/0012/0009 (ISCIII-ERDF); LL-G: INNVAL20/06 (IDIVAL); RP-F: START PROJECT (FOREUM); RL-M: Miguel Servet type I CP16/00033 (ISCIII-ESF).Disclosure of Interests:Verónica Pulito-Cueto: None declared, Sara Remuzgo Martinez: None declared, Fernanda Genre: None declared, Belén Atienza-Mateo: None declared, Victor Manuel Mora-Cuesta: None declared, David Iturbe-Fernández: None declared, Leticia Lera-Gómez: None declared, Raquel Pérez-Fernández: None declared, Pilar Alonso Lecue: None declared, Javier Rodriguez Carrio: None declared, Diana Prieto-Peña: None declared, Virginia Portilla: None declared, Ricardo Blanco Speakers bureau: Abbvie, Pfizer, Roche, Bristol-Myers, Janssen and MSD, Consultant of: Abbvie, Pfizer, Roche, Bristol-Myers, Janssen and MSD, Grant/research support from: Abbvie, MSD and Roche, Alfonso Corrales: None declared, Jose Manuel Cifrián-Martínez: None declared, Raquel López-Mejías: None declared, Miguel A González-Gay Speakers bureau: Pfizer, Abbvie, MSD, Grant/research support from: Pfizer, Abbvie, MSD


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 937.1-937
Author(s):  
V. Pulito-Cueto ◽  
S. Remuzgo-Martínez ◽  
F. Genre ◽  
V. M. Mora-Cuesta ◽  
D. Iturbe Fernández ◽  
...  

Background:Interstitial lung disease (ILD) is one of the most significant comorbidities of rheumatoid arthritis (RA), increasing the mortality in these patients [1,2]. Although the pathogenesis of ILD associated to RA (RA-ILD+) remains poorly defined [1], it is known that vascular tissue plays a crucial role in lung physiology [3]. In this context, a population of cells termed endothelial progenitor cells (EPC) are involved in vasculogenesis and endothelial tissue repair [4]. Previous reports suggest the implication of EPC in different conditions such as RA and idiopathic pulmonary fibrosis (IPF), the most common and destructive ILD [5,6]. Nevertheless, little is known about their specific role in RA-ILD+.Objectives:The purpose of this study was to shed light on the potential role of EPC in endothelial damage in RA-ILD+.Methods:Peripheral venous blood was collected from a total of 68 individuals (18 with RA-ILD+, 17 with RA-ILD-, 19 with IPF and 14 healthy controls). All subjects were recruited from the Rheumatology and Pneumology departments of Hospital Universitario Marqués de Valdecilla, Santander, Spain. Quantification of EPC was analyzed by the expression of surface antigens by flow cytometry. The combination of antibodies against the stem cell marker CD34, the immature progenitor marker CD133, the endothelial marker VEGF receptor 2 (CD309) and the common leukocyte antigen CD45 was used. EPC were considered as CD34+, CD45Low, CD309+and CD133+. All statistical analyses were performed using Prism software 5 (GraphPad).Results:EPC frequency was significantly increased in patients with RA-ILD+, RA-ILD-and IPF compared to controls (p=0.001, p=0.002, p< 0.0001, respectively). Nevertheless, patients with RA, both RA-ILD+and RA-ILD-, showed a lower frequency of EPC than those with IPF (p= 0.048, p= 0.006, respectively).Conclusion:Our results provide evidence for a potential role of EPC as a reparative compensatory mechanism related to endothelial damage in RA-ILD+, RA-ILD-and IPF patients. Interestingly, EPC frequency may help to establish a differential diagnostic between patients with IPF and those who have an underlying autoimmune disease (RA-ILD+).References:[1] J Clin Med 2019; 8: 2038;[2] Arthritis Rheumatol 2015; 67: 28-38;[3] Nat Protoc 2015; 10: 1697-1708;[4] Science 1997; 275: 964-966;[5] Rheumatology (Oxford) 2012; 51: 1775-1784;[6] Angiogenesis 2013; 16: 147-157.Acknowledgments:Personal funds, VP-C: PREVAL18/01 (IDIVAL); SR-M: RD16/0012/0009 (ISCIII-ERDF); LL-G: PI18/00042 (ISCIII-ERDF); RL-M: Miguel Servet type I CP16/00033 (ISCIII-ESF).Disclosure of Interests:Verónica Pulito-Cueto: None declared, Sara Remuzgo-Martínez: None declared, Fernanda Genre: None declared, Victor Manuel Mora-Cuesta: None declared, David Iturbe Fernández: None declared, Sonia Fernández-Rozas: None declared, Leticia Lera-Gómez: None declared, Pilar Alonso Lecue: None declared, Javier Rodriguez Carrio: None declared, Belén Atienza-Mateo: None declared, Virginia Portilla: None declared, David Merino: None declared, Ricardo Blanco Grant/research support from: AbbVie, MSD, Roche, Consultant of: Abbvie, Eli Lilly, Pfizer, Roche, Bristol-Myers, Janssen, UCB Pharma and MSD, Speakers bureau: Abbvie, Eli Lilly, Pfizer, Roche, Bristol-Myers, Janssen, UCB Pharma. MSD, Alfonso Corrales Speakers bureau: Abbvie, Jose Manuel Cifrián-Martínez: None declared, Raquel López-Mejías: None declared, Miguel A González-Gay Grant/research support from: Pfizer, Abbvie, MSD, Speakers bureau: Pfizer, Abbvie, MSD


Sign in / Sign up

Export Citation Format

Share Document