scholarly journals Visuo-vestibular gaze control - conserved subcortical processing

2021 ◽  
Author(s):  
Tobias Wibble ◽  
Tony Pansell ◽  
Sten Grillner ◽  
Juan Perez-Fernandez

Gaze stabilization compensates for movements of the head or external environment to minimize image blurring, which is critical for visually-guided behaviors. Multisensory information is used to stabilize the visual scene on the retina via the vestibulo-ocular (VOR) and optokinetic (OKR) reflexes. While the organization of neuronal circuits underlying VOR is well described across vertebrates, less is known about the contribution and evolutionary origin of the OKR circuits. Moreover, the integration of these two sensory modalities is still poorly understood. Here, we developed a novel experimental model, the isolated lamprey eye-brain-labyrinth preparation, to analyze the neuronal pathways underlying visuo-vestibular integration which allowed electrophysiological recordings while applying vestibular stimulation using a moving platform, coordinated with visual stimulation via two screens. We show that lampreys exhibit robust visuo-vestibular integration, with optokinetic information processed in the pretectum and integrated with vestibular inputs at several subcortical levels. The enhanced eye movement response to multimodal stimulation favored the vestibular response at increased velocities. The optokinetic signals can be downregulated from tectum. Additionally, saccades are present in the form of nystagmus. The lamprey represents the oldest living group of vertebrates, thus all basic components of the visuo-vestibular control of gaze were present already at the dawn of vertebrate evolution.

2011 ◽  
Vol 105 (2) ◽  
pp. 674-686 ◽  
Author(s):  
Tetsuo Kida ◽  
Koji Inui ◽  
Emi Tanaka ◽  
Ryusuke Kakigi

Numerous studies have demonstrated effects of spatial attention within single sensory modalities (within-modal spatial attention) and the effect of directing attention to one sense compared with the other senses (intermodal attention) on cortical neuronal activity. Furthermore, recent studies have been revealing that the effects of spatial attention directed to a certain location in a certain sense spread to the other senses at the same location in space (cross-modal spatial attention). The present study used magnetoencephalography to examine the temporal dynamics of the effects of within-modal and cross-modal spatial and intermodal attention on cortical processes responsive to visual stimuli. Visual or tactile stimuli were randomly presented on the left or right side at a random interstimulus interval and subjects directed attention to the left or right when vision or touch was a task-relevant modality. Sensor-space analysis showed that a response around the occipitotemporal region at around 150 ms after visual stimulation was significantly enhanced by within-modal, cross-modal spatial, and intermodal attention. A later response over the right frontal region at around 200 ms was enhanced by within-modal spatial and intermodal attention, but not by cross-modal spatial attention. These effects were estimated to originate from the occipitotemporal and lateral frontal areas, respectively. Thus the results suggest different spatiotemporal dynamics of neural representations of cross-modal attention and intermodal or within-modal attention.


1994 ◽  
Vol 71 (1) ◽  
pp. 429-432 ◽  
Author(s):  
M. T. Wallace ◽  
B. E. Stein

1. The synthesis of information from different sensory modalities in the superior colliculus is an important precursor of attentive and orientation behavior. 2. This integration of multisensory information is critically dependent on inputs from a small area of association cortex, the anterior ectosylvian sulcus. Removal of these corticotectal influences can have a remarkably specific effect: it can eliminate multisensory integration in superior colliculus neurons while leaving their responses to unimodal cues intact. 3. Apparently, some of the associative functions of cortex are accomplished via its target neurons in the midbrain.


Author(s):  
Daniel Tomsic ◽  
Julieta Sztarker

Decapod crustaceans, in particular semiterrestrial crabs, are highly visual animals that greatly rely on visual information. Their responsiveness to visual moving stimuli, with behavioral displays that can be easily and reliably elicited in the laboratory, together with their sturdiness for experimental manipulation and the accessibility of their nervous system for intracellular electrophysiological recordings in the intact animal, make decapod crustaceans excellent experimental subjects for investigating the neurobiology of visually guided behaviors. Investigations of crustaceans have elucidated the general structure of their eyes and some of their specializations, the anatomical organization of the main brain areas involved in visual processing and their retinotopic mapping of visual space, and the morphology, physiology, and stimulus feature preferences of a number of well-identified classes of neurons, with emphasis on motion-sensitive elements. This anatomical and physiological knowledge, in connection with results of behavioral experiments in the laboratory and the field, are revealing the neural circuits and computations involved in important visual behaviors, as well as the substrate and mechanisms underlying visual memories in decapod crustaceans.


2021 ◽  
Author(s):  
Julian R. Day-Cooney ◽  
Jackson J. Cone ◽  
John H.R. Maunsell

SummaryDuring visually guided behaviors, mere hundreds of milliseconds can elapse between a sensory input and its associated behavioral response. How spikes occurring at different times are integrated to drive perception and action remains poorly understood. We delivered random trains of optogenetic stimulation (white noise) to excite inhibitory interneurons in V1 of mice while they performed a visual detection task. We then performed a reverse correlation analysis on the optogenetic stimuli to generate a neuronal-behavioral kernel: an unbiased, temporally-precise estimate of how suppression of V1 spiking at different moments around the onset of a visual stimulus affects detection of that stimulus. Electrophysiological recordings enabled us to capture the effects of optogenetic stimuli on V1 responsivity and revealed that the earliest stimulus-evoked spikes are preferentially weighted for guiding behavior. These data demonstrate that white noise optogenetic stimulation is a powerful tool for understanding how patterns of spiking in neuronal populations are decoded in generating perception and action.


2020 ◽  
Vol 71 (1) ◽  
pp. 193-219 ◽  
Author(s):  
Mark T. Wallace ◽  
Tiffany G. Woynaroski ◽  
Ryan A. Stevenson

During our everyday lives, we are confronted with a vast amount of information from several sensory modalities. This multisensory information needs to be appropriately integrated for us to effectively engage with and learn from our world. Research carried out over the last half century has provided new insights into the way such multisensory processing improves human performance and perception; the neurophysiological foundations of multisensory function; the time course for its development; how multisensory abilities differ in clinical populations; and, most recently, the links between multisensory processing and cognitive abilities. This review summarizes the extant literature on multisensory function in typical and atypical circumstances, discusses the implications of the work carried out to date for theory and research, and points toward next steps for advancing the field.


1995 ◽  
Vol 198 (3) ◽  
pp. 675-681
Author(s):  
F Ullén ◽  
T G Deliagina ◽  
G N Orlovsky ◽  
S Grillner

The responses of attached lampreys to homogeneous visual stimulation and the role of visual stimuli in orientation during locomotion were investigated. Experiments were performed by video recording the responses of intact and lesioned animals to illumination. The following results were obtained. 1. In lampreys attached with their sucker mouth to the bottom of the aquarium, illumination of one eye evoked several possible motor responses (ordered after mean latency): (a) movement of the illuminated eye downwards, and the contralateral eye upwards; (b) rotation of the body around the longitudinal axis, with the illuminated side tilting downwards; (c) deviation of the caudal part of the anterior dorsal fin in the contralateral direction (away from the light); and (d) flexion of the neck and body towards the side of illumination. 2. Illumination of one eye in attached lampreys often resulted in detachment and subsequent movement in a direction away from the light source (negative phototaxis). This response was not related to the degree of roll tilt before detachment, so the negative phototaxis does not appear to be a consequence of the vestibular stimulation. 3. Negative phototaxis was also seen during locomotion: lampreys turned through 180 ° when they approached a brightly illuminated area. Photostimulation also affected their orientation in the transverse plane during swimming. Illumination of one eye from the side induced a roll movement, so that the illuminated side tilted downwards and the dorsum of the lamprey became turned towards the light. This is similar to the 'dorsal light response' of fish and shows that vision also plays a role in postural control in lampreys. 4. The behaviour of blinded animals differed strikingly from that of intact ones. Whereas intact animals preferentially swam close to the bottom, along horizontal trajectories, blinded animals showed episodes of continuous swimming upwards, near the water surface. During horizontal swimming, their orientation in the transverse plane remained normal, with the dorsal side up.


2015 ◽  
Vol 114 (5) ◽  
pp. 2967-2982 ◽  
Author(s):  
Jaap H. van Dieën ◽  
Marloes van Leeuwen ◽  
Gert S. Faber

We investigated motor and sensory changes underlying learning of a balance task. Fourteen participants practiced balancing on one leg on a board that could freely rotate in the frontal plane. They performed six, 16-s trials standing on one leg on a stable surface (2 trials without manipulation, 2 with vestibular, and 2 with visual stimulation) and six trials on the balance board before and after a 30-min training. Center of mass (COM) movement, segment, and total angular momenta and board angles were determined. Trials on stable surface were compared with trials after training to assess effects of surface conditions. Trials pretraining and posttraining were compared to assess rapid (between trials pretraining) and slower (before and after training) learning, and sensory manipulation trials were compared with unperturbed trials to assess sensory weighting. COM excursions were larger on the unstable surface but decreased with practice, with the largest improvement over the pretraining trials. Changes in angular momentum contributed more to COM acceleration on the balance board, but with practice this decreased. Visual stimulation increased sway similarly in both surface conditions, while vestibular stimulation increased sway less on the balance board. With practice, the effects of visual and vestibular stimulation increased rapidly. Initially, oscillations of the balance board occurred at 3.5 Hz, which decreased with practice. The initial decrease in sway with practice was associated with upweighting of visual information, while later changes were associated with suppression of oscillations that we suggest are due to too high proprioceptive feedback gains.


Author(s):  
Andrew T. Smith

AbstractThe response properties, connectivity and function of the cingulate sulcus visual area (CSv) are reviewed. Cortical area CSv has been identified in both human and macaque brains. It has similar response properties and connectivity in the two species. It is situated bilaterally in the cingulate sulcus close to an established group of medial motor/premotor areas. It has strong connectivity with these areas, particularly the cingulate motor areas and the supplementary motor area, suggesting that it is involved in motor control. CSv is active during visual stimulation but only if that stimulation is indicative of self-motion. It is also active during vestibular stimulation and connectivity data suggest that it receives proprioceptive input. Connectivity with topographically organized somatosensory and motor regions strongly emphasizes the legs over the arms. Together these properties suggest that CSv provides a key interface between the sensory and motor systems in the control of locomotion. It is likely that its role involves online control and adjustment of ongoing locomotory movements, including obstacle avoidance and maintaining the intended trajectory. It is proposed that CSv is best seen as part of the cingulate motor complex. In the human case, a modification of the influential scheme of Picard and Strick (Picard and Strick, Cereb Cortex 6:342–353, 1996) is proposed to reflect this.


2021 ◽  
Author(s):  
Anouk Keizer ◽  
Manja Engel

Anorexia nervosa (AN) is an eating disorder that mainly affects young women. One of the most striking symptoms of this disorder is the distorted experience of body size and shape. Patients are by definition underweight, but experience and perceive their body as bigger than it in reality is. This body representation disturbance has fascinated scientists for many decades, leading to a rich and diverse body of literature on this topic. Research shows that AN patients do not only think that their body is bigger than reality, and visually perceive it as such, but that other sensory modalities also play an important role in oversized body experiences. Patients for example have an altered (enlarged) size perception of tactile stimuli, and move their body as if it is larger than it actually is. Moreover, patients with AN appear to process and integrate multisensory information differently than healthy individuals, especially in relation to body size. This leads to the conclusion that the representation of the size of the body in the brain is enlarged. This conclusion has important implications for the treatment of body representation disturbances in AN. Traditionally treatment of AN is very cognitive in nature, it is possible however that changed cognitions with respect to body size experiences do not lead to actual changes in metric representations of body size stored in the brain. Recently a few studies have been published in which a multisensory approach in treatment of body representation disturbance in AN has been found to be effective in treating this symptom of AN.


Sign in / Sign up

Export Citation Format

Share Document