scholarly journals A kinetic error filtering mechanism for enzyme-free copying of nucleic acid sequences

2021 ◽  
Author(s):  
Tobias Göppel ◽  
Benedikt Obermayer ◽  
Irene A. Chen ◽  
Ulrich Gerland

Accurate copying of nucleic acid sequences is essential for self-replicating systems. Modern cells achieve error ratios as low as 10-9 with sophisticated enzymes capable of kinetic proofreading. In contrast, experiments probing enzyme-free copying of RNA and DNA as potential prebiotic replication processes find error ratios on the order of 10%. Given this low intrinsic copying fidelity, plausible scenarios for the spontaneous emergence of molecular evolution require an accuracy-enhancing mechanism. Here, we study a 'kinetic error filtering' scenario that dramatically boosts the likelihood of producing exact copies of nucleic acid sequences. The mechanism exploits the observation that initial errors in template-directed polymerization of both DNA and RNA are likely to trigger a cascade of consecutive errors and significantly stall downstream extension. We incorporate these characteristics into a mathematical model with experimentally estimated parameters, and leverage this model to probe to what extent accurate and faulty polymerization products can be kinetically discriminated. While limiting the time window for polymerization prevents completion of erroneous strands, resulting in a pool in which full-length products show an enhanced accuracy, this comes at the price of a concomitant reduction in yield. We show that this fidelity-yield trade-off can be circumvented via repeated copying attempts in cyclically varying environments such as the temperature cycles occurring naturally in the vicinity of hydrothermal systems. This setting could produce exact copies of sequences as long as 50mers within their lifetime, facilitating the emergence and maintenance of catalytically active oligonucleotides.

Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 968 ◽  
Author(s):  
Konstantinos Lambropoulos ◽  
Constantinos Simserides

This review is devoted to tight-binding (TB) modeling of nucleic acid sequences like DNA and RNA. It addresses how various types of order (periodic, quasiperiodic, fractal) or disorder (diagonal, non-diagonal, random, methylation et cetera) affect charge transport. We include an introduction to TB and a discussion of its various submodels [wire, ladder, extended ladder, fishbone (wire), fishbone ladder] and of the process of renormalization. We proceed to a discussion of aperiodicity, quasicrystals and the mathematics of aperiodic substitutional sequences: primitive substitutions, Perron–Frobenius eigenvalue, induced substitutions, and Pisot property. We discuss the energy structure of nucleic acid wires, the coupling to the leads, the transmission coefficients and the current–voltage curves. We also summarize efforts aiming to examine the potentiality to utilize the charge transport characteristics of nucleic acids as a tool to probe several diseases or disorders.


Author(s):  
B.A. Hamkalo ◽  
S. Narayanswami ◽  
A.P. Kausch

The availability of nonradioactive methods to label nucleic acids an the resultant rapid and greater sensitivity of detection has catapulted the technique of in situ hybridization to become the method of choice to locate of specific DNA and RNA sequences on chromosomes and in whole cells in cytological preparations in many areas of biology. It is being applied to problems of fundamental interest to basic cell and molecular biologists such as the organization of the interphase nucleus in the context of putative functional domains; it is making major contributions to genome mapping efforts; and it is being applied to the analysis of clinical specimens. Although fluorescence detection of nucleic acid hybrids is routinely used, certain questions require greater resolution. For example, very closely linked sequences may not be separable using fluorescence; the precise location of sequences with respect to chromosome structures may be below the resolution of light microscopy(LM); and the relative positions of sequences on very small chromosomes may not be feasible.


2019 ◽  
Author(s):  
Veeren Chauhan ◽  
Mohamed M Elsutohy ◽  
C Patrick McClure ◽  
Will Irving ◽  
Neil Roddis ◽  
...  

<p>Enteroviruses are a ubiquitous mammalian pathogen that can produce mild to life-threatening disease. Bearing this in mind, we have developed a rapid, accurate and economical point-of-care biosensor that can detect a nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and aptamers to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral RNA sequence (23 bases), which was identified through in silico screening. Aptamers were designed to demonstrate specific complementarity towards the target enteroviral RNA to produce aggregated gold-aptamer nanoconstructs. Conserved target enteroviral nucleic acid sequence (≥ 1x10<sup>-7</sup> M, ≥1.4×10<sup>-14</sup> g/mL), initiates gold-aptamer-nanoconstructs disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow-assays that utilise gold-aptamer-nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (< 60 s) and could be interpreted with a bespoke software and hardware electronic interface. We anticipate our methodology will translate in-silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave-the-way forward in the clinical evaluation of disease and complement existing strategies at overcoming antimicrobial resistance.</p>


2021 ◽  
Author(s):  
Ya Ying Zheng ◽  
Ying Wu ◽  
Thomas Begley ◽  
Jia Sheng

Sulfur modifications have been discovered on both DNA and RNA. Sulfur substitution of oxygen atoms at nucleobase or backbone locations in the nucleic acid framework led to a wide variety...


2021 ◽  
Author(s):  
Jagannath Jana ◽  
Swantje Mohr ◽  
Yoanes Maria Vianney ◽  
Klaus Weisz

G-rich nucleic acid sequences encompassing G-tracts of varying lengths can fold into different non-canonical G-quadruplexes with distinct structural features.


Author(s):  
Noemi Bellassai ◽  
Roberta D’Agata ◽  
Giuseppe Spoto

AbstractNucleic acid nanotechnology designs and develops synthetic nucleic acid strands to fabricate nanosized functional systems. Structural properties and the conformational polymorphism of nucleic acid sequences are inherent characteristics that make nucleic acid nanostructures attractive systems in biosensing. This review critically discusses recent advances in biosensing derived from molecular beacon and DNA origami structures. Molecular beacons belong to a conventional class of nucleic acid structures used in biosensing, whereas DNA origami nanostructures are fabricated by fully exploiting possibilities offered by nucleic acid nanotechnology. We present nucleic acid scaffolds divided into conventional hairpin molecular beacons and DNA origami, and discuss some relevant examples by focusing on peculiar aspects exploited in biosensing applications. We also critically evaluate analytical uses of the synthetic nucleic acid structures in biosensing to point out similarities and differences between traditional hairpin nucleic acid sequences and DNA origami. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document