scholarly journals Disc and Actin-Associated Protein 1 Influence Host Attachment in the Intestinal Parasite Giardia lamblia

2021 ◽  
Author(s):  
Melissa C. Steele-Ogus ◽  
Ava M. Obenaus ◽  
Nathan J. Sniadecki ◽  
Alexander R. Paredez

The deep-branching eukaryote Giardia lamblia is an extracellular parasite that attaches to the host intestine via a microtubule-based structure called the ventral disc. Control of attachment is mediated in part by the movement of two regions of the ventral disc that either permit or exclude the passage of fluid under the disc. Several known disc-associated proteins (DAPs) contribute to disc structure and function, but no force-generating protein has been identified among them. We recently identified several Giardia actin (GlActin) interacting proteins at the ventral disc, which could potentially employ actin polymerization for force generation and disc conformational changes. One of these proteins, Disc and Actin Associated Protein 1 (DAAP1), is highly enriched at the two regions of the disc previously shown to be important for fluid flow during attachment. In this study, we investigate the role of both GlActin and DAAP1 in ventral disc morphology and function. We confirmed interaction between GlActin and DAAP1 through coimmunoprecipitation, and used immunofluorescence to localize both proteins throughout the cell cycle and during trophozoite attachment. Similar to other DAPs, the association of DAAP1 with the disc is stable, except during cell division when the disc disassembles. Depletion of GlActin by translation-blocking antisense morpholinos resulted in both impaired attachment and defects in the ventral disc, indicating that GlActin contributes to disc-mediated attachment. Depletion of DAAP1 through CRISPR interference resulted in intact discs but impaired attachment, gating, and flow under the disc. As attachment is essential for infection, elucidation of these and other molecular mediators is a promising area for development of new therapeutics against a ubiquitous parasite.

Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 404 ◽  
Author(s):  
María Touz ◽  
Constanza Feliziani ◽  
Andrea Rópolo

The manner in which membrane-associated proteins interact with the membrane defines their subcellular fate and function. This interaction relies on the characteristics of the proteins, their journey after synthesis, and their interaction with other proteins or enzymes. Understanding these properties may help to define the function of a protein and also the role of an organelle. In the case of microorganisms like protozoa parasites, it may help to understand singular features that will eventually lead to the design of parasite-specific drugs. The protozoa parasite Giardia lamblia is an example of a widespread parasite that has been infecting humans and animals from ancestral times, adjusting itself to the changes of the environment inside and outside the host. Several membrane-associated proteins have been posted in the genome database GiardiaDB, although only a few of them have been characterized. This review discusses the data regarding membrane-associated proteins in relationship with lipids and specific organelles and their implication in the discovery of anti-giardial therapies.


Author(s):  
Jonathon A Ditlev

Abstract Liquid‒liquid phase separation (LLPS) of biomolecules has emerged as an important mechanism that contributes to cellular organization. Phase separated biomolecular condensates, or membrane-less organelles, are compartments composed of specific biomolecules without a surrounding membrane in the nucleus and cytoplasm. LLPS also occurs at membranes, where both lipids and membrane-associated proteins can de-mix to form phase separated compartments. Investigation of these membrane-associated condensates using in vitro biochemical reconstitution and cell biology has provided key insights into the role of phase separation in membrane domain formation and function. However, these studies have generally been limited by available technology to study LLPS on model membranes and the complex cellular environment that regulates condensate formation, composition, and function. Here, I briefly review our current understanding of membrane-associated condensates, establish why LLPS can be advantageous for certain membrane-associated condensates, and offer a perspective for how these condensates may be studied in the future.


2021 ◽  
Author(s):  
Isabel Cristina Vélez-Bermúdez ◽  
Wolfgang Schmidt

Abstract BackgroundCovalent modifications of core histonesgoverndownstream DNA-templated processes such as transcription by altering chromatin structure and function. Previously, we reported that the plant homeodomain protein ALFIN-LIKE6 (AL6), a bona fide histone reader that preferentially binds trimethylated lysin 4 on histone 3 (H3K4me3), is critical for recalibration of cellular phosphate (Pi) homeostasis and root hair elongation under Pi-deficient conditions. ResultsHere, we demonstrate that AL6 is also involved in the response of Arabidopsis seedlings to jasmonic acid (JA) during skotomorphogenesis, possibly by modulating chromatin dynamics that affect the transcriptional regulation of JA-responsivegenes. Dark-grown al6 seedlings showed a compromised reduction in hypocotyl elongation upon exogenously supplied JA, a response that was calibrated by the availability of Pi in the growth medium. A comparison of protein profiles between wild-type and al6 mutant seedlings using a quantitative Chromatin Enrichment for Proteomics (ChEP) approach,that we modified for plant tissue and designated ChEP-P (ChEP in Plants), yielded a comprehensive suite of chromatin-associated proteins and candidates that may be causative for the mutant phenotype. ConclusionsAltered abundance of proteins involved in chromatin organization in al6 seedlings suggests a role of AL6 in coordinating the deposition of histone variants upon perception of internal or environmental stimuli. Our study shows that ChEP-P is well suited to gain holistic insights into chromatin-related processes in plants. Data are available via ProteomeXchange with identifier PXD026541.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1210
Author(s):  
Christophe Caillat ◽  
Delphine Guilligay ◽  
Guidenn Sulbaran ◽  
Winfried Weissenhorn

HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.


2007 ◽  
Vol 18 (5) ◽  
pp. 1609-1620 ◽  
Author(s):  
Diana Caracino ◽  
Cheryl Jones ◽  
Mark Compton ◽  
Charles L. Saxe

Scar/WAVE proteins, members of the conserved Wiskott-Aldrich syndrome (WAS) family, promote actin polymerization by activating the Arp2/3 complex. A number of proteins, including a complex containing Nap1, PIR121, Abi1/2, and HSPC300, interact with Scar/WAVE, though the role of this complex in regulating Scar function remains unclear. Here we identify a short N-terminal region of Dictyostelium Scar that is necessary and sufficient for interaction with HSPC300 and Abi in vitro. Cells expressing Scar lacking this N-terminal region show abnormalities in F-actin distribution, cell morphology, movement, and cytokinesis. This is true even in the presence of wild-type Scar. The data suggest that the first 96 amino acids of Scar are necessary for participation in a large-molecular-weight protein complex, and that this Scar-containing complex is responsible for the proper localization and regulation of Scar. The presence of mis-regulated or unregulated Scar has significant deleterious effects on cells and may explain the need to keep Scar activity tightly controlled in vivo either by assembly in a complex or by rapid degradation.


Author(s):  
Melissa C. Steele-Ogus ◽  
Richard S. Johnson ◽  
Michael J. MacCoss ◽  
Alexander R. Paredez

Giardia lamblia is an intestinal parasite that colonizes the small intestine and causes diarrhea, which can lead to dehydration and malnutrition. Giardia actin ( Gl Actin) has a conserved role in Giardia cells, despite being a highly divergent protein with none of the conserved regulators found in model organisms. Here, we identify and localize 46 interactors of polymerized actin.


2021 ◽  
Author(s):  
Yuki Kitai ◽  
Ko Sato ◽  
Daiki Tanno ◽  
Xiaoliang Yuan ◽  
Aya Umeki ◽  
...  

The cell walls and capsules of Cryptococcus neoformans , a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans . In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2KO) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans . Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans , was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.


2001 ◽  
Vol 153 (5) ◽  
pp. 947-956 ◽  
Author(s):  
Niels Volkmann ◽  
David DeRosier ◽  
Paul Matsudaira ◽  
Dorit Hanein

Actin bundles have profound effects on cellular shape, division, adhesion, motility, and signaling. Fimbrin belongs to a large family of actin-bundling proteins and is involved in the formation of tightly ordered cross-linked bundles in the brush border microvilli and in the stereocilia of inner ear hair cells. Polymorphism in these three-dimensional (3D) bundles has prevented the detailed structural characterization required for in-depth understanding of their morphogenesis and function. Here, we describe the structural characterization of two-dimensional arrays of actin cross-linked with human T-fimbrin. Structural information obtained by electron microscopy, x-ray crystallography, and homology modeling allowed us to build the first molecular model for the complete actin–fimbrin cross-link. The restriction of the arrays to two dimensions allowed us to deduce the spatial relationship between the components, the mode of fimbrin cross-linking, and the flexibility within the cross-link. The atomic model of the fimbrin cross-link, the cross-linking rules deduced from the arrays, and the hexagonal packing of actin bundles in situ were all combined to generate an atomic model for 3D actin–fimbrin bundles. Furthermore, the assembly of the actin–fimbrin arrays suggests coupling between actin polymerization, fimbrin binding, and crossbridge formation, presumably achieved by a feedback between conformational changes and changes in affinity.


Author(s):  
Sanja Djokic ◽  
Bakhrat Anna ◽  
Ido Zurim ◽  
Nadya Urakova ◽  
Jason L. Rasgon ◽  
...  

AbstractInsect epithelial cells contain cellular extensions such as bristles, hairs and scales. It has been suggested that these cellular extensions are homologous structures that differ in morphology and function. These cellular extensions contain actin bundles that dictate their cellular morphology; bristle and hair are cylindrical in shape, while scales are wider and flattened. While the organization, function and identity of the major actin bundling protein in bristles and hairs is known, this information in scales is unknown. In this study, we characterized the development of scales and the role of actin bundles in the mosquito, Aedes aegypti. We show that scales undergo drastic morphological changes during development, from cylindrical shape to flat shape with longer membrane invagination. Scale actin bundle distribution changes during development, from symmetrical organization of actin bundles located throughout the bristle membrane, to asymmetrical organization of the actin bundles. By chemically inhibiting actin polymerization and by knocking-out the forked gene in the mosquito (Ae-Forked; a known actin bundling protein), by CRISPR-Cas9 gene editing, we showed that actin bundles are required for shaping bristle, hair and scale morphology. We demonstrated that actin bundles and Ae-Forked are required for bristle elongation, but not that of scales. In scales, actin bundles are required for width formation. Our results reveal a differential requirement of actin bundles in shaping mosquito scales compared to bristles.


2021 ◽  
Author(s):  
Shokouh Rezaei ◽  
Yahya Sefidbakht ◽  
Filipe Pereira

Abstract SARS-CoV-2 non-structural protein 1 (Nsp1) is a virulence factor that inhibits the translation of host mRNAs and interact with viral RNA. Despite the relevance of Nsp1, few studies have been conducted to understand the effect of mutations on Nsp1 structure and function. Here, we provide a molecular dynamics simulation of SARS-CoV-2 Nsp1, wild type and variants. We found that SARS-CoV-2 Nsp1 has a more Rg value than SARS-CoV-1 Nsp1, with indicate an effect on the folding protein. This result suggest that SARS-CoV-2 Nsp1 can more easily approach the active site of the ribosome compared to SARS-CoV-1 Nsp1. In addition, we found that the C-terminal of the SARS-CoV-2 Nsp1, in particular residues 164 to 170, are more flexible than other regions of SARS-CoV-2 Nsp1 and SARS-CoV-1 Nsp1, confirming the role of this region in the interaction with the 40S subunit. Moreover, multiple deletion mutations have been found in the N/C-terminal of the SARS-CoV-2 Nsp1, which seems the effect of SARS-CoV-2 Nsp1 multiple deletions is greater than that of substitutions. Among all deletions, D156-158 and D80-90 may destabilize the protein structure and possibly increase the virulence of the SARS-CoV-2. Overall, our findings reinforce the importance of studying Nsp1 conformational changes in new variants and its effect on virulence of SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document