scholarly journals SUMOylation of Jun fine-tunes the Drosophila gut immune response

2021 ◽  
Author(s):  
Amarendranath Soory ◽  
Girish S Ratnaparkhi

Post-translational modification by the small ubiquitin-like modifier, SUMO can modulate the activity of its conjugated proteins. The transcriptional regulator Jun, a member of the AP-1 complex is one such SUMO target. We find that Jra, the Drosophila Jun ortholog, is a regulator of the Pseudomonas entomophila induced gut immune gene regulatory network, modulating the expression of a few thousand genes, as measured by quantitative RNA sequencing. Decrease in Jra in gut enterocytes is protective, suggesting that reduction of Jra signaling favors the host over the pathogen. In Jra, lysines 29 and 190 are SUMO conjugation targets, with the JraK29R+K190R double mutant being SUMO conjugation resistant (SCR). Interestingly, a JraSCR fly line, generated by CRISPR/Cas9 based genome editing, is more sensitive to infection, with adults showing a weakened host response and increased proliferation of Pseudomonas. Transcriptome analysis of the guts of JraSCR and JraWT flies suggests that lack of SUMOylation of Jra significantly changes core elements of the immune gene regulatory network, that include antimicrobial agents, secreted ligands, feedback regulators, and transcription factors. SUMOylation attenuates Jra activity, with the master immune regulator Relish being an important transcriptional target. Our study implicates Jra as a major immune regulator, with dynamic SUMO conjugation/deconjugation modulating the kinetics of the gut transcriptional immune response.

2019 ◽  
Author(s):  
Soraia Martins ◽  
Andreas Müller-Schiffmann ◽  
Martina Bohndorf ◽  
Wasco Wruck ◽  
Kristel Sleegers ◽  
...  

AbstractRecently, genes associated with immune response and inflammation have been identified as genetic risk factors for late-onset Alzheimer’s disease (LOAD). One of them is the rare p.Arg47His (R47H) variant within triggering receptor expressed on myeloid cells 2 (TREM2), which has been shown to increase the risk for developing AD 2-3-fold. Here, we report the generation and characterization of a model of LOAD using lymphoblast-derived iPSCs from patients harbouring the R47H mutation in TREM2 (AD TREM2 iPSCs), as well as from control individuals without dementia (CON iPSCs). iPSCs efficiently differentiate into mature neuronal cultures and comparative global transcriptome analysis identified a distinct gene expression profile in AD TREM2 neuronal cultures. Furthermore, manipulation of the iPSC-derived functional neuronal cultures with an Aβ-S8C dimer highlighted metabolic pathways, phagosome and immune response as the most perturbed pathways in AD TREM2 neuronal cultures. Through the construction of an Aβ-induced gene regulatory network, we were able to identify an Aβ signature linked to protein processing in the endoplasmic reticulum (ER) which emphasised ER-stress, as a potential causal role in LOAD. Overall, this study has shown that our AD-iPSC based model can be used for in-depth studies to better understand the molecular mechanisms underlying the etiology of LOAD and provides new opportunities for screening of potential therapeutic targets.


2020 ◽  
Vol 21 (12) ◽  
pp. 4516
Author(s):  
Soraia Martins ◽  
Andreas Müller-Schiffmann ◽  
Lars Erichsen ◽  
Martina Bohndorf ◽  
Wasco Wruck ◽  
...  

Genes associated with immune response and inflammation have been identified as genetic risk factors for late-onset Alzheimer´s disease (LOAD). The rare R47H variant within triggering receptor expressed on myeloid cells 2 (TREM2) has been shown to increase the risk for developing Alzheimer’s disease (AD) 2–3-fold. Here, we report the generation and characterization of a model of late-onset Alzheimer’s disease (LOAD) using lymphoblast-derived induced pluripotent stem cells (iPSCs) from patients carrying the TREM2 R47H mutation, as well as from control individuals without dementia. All iPSCs efficiently differentiated into mature neuronal cultures, however AD neuronal cultures showed a distinct gene expression profile. Furthermore, manipulation of the iPSC-derived neuronal cultures with an Aβ-S8C dimer highlighted metabolic pathways, phagosome and immune response as the most perturbed pathways in AD neuronal cultures. Through the construction of an Aβ-induced gene regulatory network, we were able to identify an Aβ signature linked to protein processing in the endoplasmic reticulum (ER), which emphasized ER-stress, as a potential causal role in LOAD. Overall, this study has shown that our AD-iPSC based model can be used for in-depth studies to better understand the molecular mechanisms underlying the etiology of LOAD and provides new opportunities for screening of potential therapeutic targets.


Author(s):  
Xingzhe Yang ◽  
Feng Li ◽  
Jie Ma ◽  
Yan Liu ◽  
Xuejiao Wang ◽  
...  

AbstractIn recent years, the incidence of fatigue has been increasing, and the effective prevention and treatment of fatigue has become an urgent problem. As a result, the genetic research of fatigue has become a hot spot. Transcriptome-level regulation is the key link in the gene regulatory network. The transcriptome includes messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). MRNAs are common research targets in gene expression profiling. Noncoding RNAs, including miRNAs, lncRNAs, circRNAs and so on, have been developed rapidly. Studies have shown that miRNAs are closely related to the occurrence and development of fatigue. MiRNAs can regulate the immune inflammatory reaction in the central nervous system (CNS), regulate the transmission of nerve impulses and gene expression, regulate brain development and brain function, and participate in the occurrence and development of fatigue by regulating mitochondrial function and energy metabolism. LncRNAs can regulate dopaminergic neurons to participate in the occurrence and development of fatigue. This has certain value in the diagnosis of chronic fatigue syndrome (CFS). CircRNAs can participate in the occurrence and development of fatigue by regulating the NF-κB pathway, TNF-α and IL-1β. The ceRNA hypothesis posits that in addition to the function of miRNAs in unidirectional regulation, mRNAs, lncRNAs and circRNAs can regulate gene expression by competitive binding with miRNAs, forming a ceRNA regulatory network with miRNAs. Therefore, we suggest that the miRNA-centered ceRNA regulatory network is closely related to fatigue. At present, there are few studies on fatigue-related ncRNA genes, and most of these limited studies are on miRNAs in ncRNAs. However, there are a few studies on the relationship between lncRNAs, cirRNAs and fatigue. Less research is available on the pathogenesis of fatigue based on the ceRNA regulatory network. Therefore, exploring the complex mechanism of fatigue based on the ceRNA regulatory network is of great significance. In this review, we summarize the relationship between miRNAs, lncRNAs and circRNAs in ncRNAs and fatigue, and focus on exploring the regulatory role of the miRNA-centered ceRNA regulatory network in the occurrence and development of fatigue, in order to gain a comprehensive, in-depth and new understanding of the essence of the fatigue gene regulatory network.


Sign in / Sign up

Export Citation Format

Share Document