scholarly journals Peptide Scanning of SARS-CoV and SARS-CoV-2 Spike Protein Subunit 1 Reveals Potential Additional Receptor Binding Sites

2021 ◽  
Author(s):  
Weilin Lin ◽  
Jannatul Rafeya ◽  
Vanessa Roschewitz ◽  
David Smith ◽  
Adrian Keller ◽  
...  

The binding of SARS-CoV and SARS-CoV-2 to the ACE2 receptor on human cells is mediated by the spike protein subunit 1 (S1) on the virus surfaces, while the receptor binding domains (RBDs) of S1 are the major determinants for the interaction with ACE2 and dominant targets of neutralizing antibodies. However, at the virus-host interface, additional biomolecular interactions, although being relatively weak in affinity and low in specificity, could also contribute to viral attachment and play important roles in gain- or loss-of-function mutations. In this work, we performed a peptide scanning of the S1 domains of SARS-CoV and SARS-CoV-2 by synthesizing 972 16-mer native and mutated peptide fragments using a high throughput in situ array synthesis technology. By probing the array using fluorescently labelled ACE2, a number of previously unknown potential receptor binding sites of S1 have been revealed. 20 peptides were synthesized using solid phase peptide synthesis, in order to validate and quantify their binding to ACE2. Four ACE2-binding peptides were selected, to investigate whether they can be assembled through a biotinylated peptide/neutravidin system to achieve high affinity to ACE2. A number of constructs exhibited high affinity to ACE2 with Kd values of pM to low nM.

2020 ◽  
Vol 3 (4) ◽  
pp. 246-256
Author(s):  
Yaping Sun ◽  
Mitchell Ho

Abstract SARS-CoV-2 antibody therapeutics are being evaluated in clinical and preclinical stages. As of 11 October 2020, 13 human monoclonal antibodies targeting the SARS-CoV-2 spike protein have entered clinical trials with three (REGN-COV2, LY3819253/LY-CoV555, and VIR-7831/VIR-7832) in phase 3. On 9 November 2020, the US Food and Drug Administration issued an emergency use authorization for bamlanivimab (LY3819253/LY-CoV555) for the treatment of mild-to-moderate COVID-19. This review outlines the development of neutralizing antibodies against SARS-CoV-2, with a focus on discussing various antibody discovery strategies (animal immunization, phage display and B cell cloning), describing binding epitopes and comparing neutralizing activities. Broad-neutralizing antibodies targeting the spike proteins of SARS-CoV-2 and SARS-CoV might be helpful for treating COVID-19 and future infections. VIR-7831/7832 based on S309 is the only antibody in late clinical development, which can neutralize both SARS-CoV-2 and SARS-CoV although it does not directly block virus receptor binding. Thus far, the only cross-neutralizing antibody that is also a receptor binding blocker is nanobody VHH-72. The feasibility of developing nanobodies as inhaled drugs for treating COVID-19 and other respiratory diseases is an attractive idea that is worth exploring and testing. A cocktail strategy such as REGN-COV2, or engineered multivalent and multispecific molecules, combining two or more antibodies might improve the efficacy and protect against resistance due to virus escape mutants. Besides the receptor-binding domain, other viral antigens such as the S2 subunit of the spike protein and the viral attachment sites such as heparan sulfate proteoglycans that are on the host cells are worth investigating.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dapeng Sun ◽  
Zhe Sang ◽  
Yong Joon Kim ◽  
Yufei Xiang ◽  
Tomer Cohen ◽  
...  

AbstractInterventions against variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Stable and potent nanobodies (Nbs) that target the receptor binding domain (RBD) of SARS-CoV-2 spike are promising therapeutics. However, it is unknown if Nbs broadly neutralize circulating variants. We found that RBD Nbs are highly resistant to variants of concern (VOCs). High-resolution cryoelectron microscopy determination of eight Nb-bound structures reveals multiple potent neutralizing epitopes clustered into three classes: Class I targets ACE2-binding sites and disrupts host receptor binding. Class II binds highly conserved epitopes and retains activity against VOCs and RBDSARS-CoV. Cass III recognizes unique epitopes that are likely inaccessible to antibodies. Systematic comparisons of neutralizing antibodies and Nbs provided insights into how Nbs target the spike to achieve high-affinity and broadly neutralizing activity. Structure-function analysis of Nbs indicates a variety of antiviral mechanisms. Our study may guide the rational design of pan-coronavirus vaccines and therapeutics.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Veronika Barbara Felber ◽  
Manuel Amando Valentin ◽  
Hans-Jürgen Wester

Abstract Aim To investigate whether modifications of prostate-specific membrane antigen (PSMA)-targeted radiolabeled urea-based inhibitors could reduce salivary gland uptake and thus improve tumor-to-salivary gland ratios, several analogs of a high affinity PSMA ligand were synthesized and evaluated in in vitro and in vivo studies. Methods Binding motifs were synthesized ‘on-resin’ or, when not practicable, in solution. Peptide chain elongations were performed according to optimized standard protocols via solid-phase peptide synthesis. In vitro experiments were performed using PSMA+ LNCaP cells. In vivo studies as well as μSPECT/CT scans were conducted with male LNCaP tumor xenograft-bearing CB17-SCID mice. Results PSMA ligands with A) modifications within the central Zn2+-binding unit, B) proinhibitor motifs and C) substituents & bioisosteres of the P1′-γ-carboxylic acid were synthesized and evaluated. Modifications within the central Zn2+-binding unit of PSMA-10 (Glu-urea-Glu) provided three compounds. Thereof, only natLu-carbamate I (natLu-3) exhibited high affinity (IC50 = 7.1 ± 0.7 nM), but low tumor uptake (5.31 ± 0.94% ID/g, 1 h p.i. and 1.20 ± 0.55% ID/g, 24 h p.i.). All proinhibitor motif-based ligands (three in total) exhibited low binding affinities (> 1 μM), no notable internalization and very low tumor uptake (< 0.50% ID/g). In addition, four compounds with P1′-ɣ-carboxylate substituents were developed and evaluated. Thereof, only tetrazole derivative natLu-11 revealed high affinity (IC50 = 16.4 ± 3.8 nM), but also this inhibitor showed low tumor uptake (3.40 ± 0.63% ID/g, 1 h p.i. and 0.68 ± 0.16% ID/g, 24 h p.i.). Salivary gland uptake in mice remained at an equally low level for all compounds (between 0.02 ± 0.00% ID/g and 0.09 ± 0.03% ID/g), wherefore apparent tumor-to-submandibular gland and tumor-to-parotid gland ratios for the modified peptides were distinctly lower (factor 8–45) than for [177Lu]Lu-PSMA-10 at 24 h p.i. Conclusions The investigated compounds could not compete with the in vivo characteristics of the EuE-based PSMA inhibitor [177Lu]Lu-PSMA-10. Although two derivatives (3 and 11) were found to exhibit high affinities towards LNCaP cells, tumor uptake at 24 h p.i. was considerably low, while uptake in salivary glands remained unaffected. Optimization of the established animal model should be envisaged to enable a clear identification of PSMA-targeting radioligands with improved tumor-to-salivary gland ratios in future studies.


Glycobiology ◽  
2020 ◽  
Vol 30 (12) ◽  
pp. 981-988 ◽  
Author(s):  
Asif Shajahan ◽  
Nitin T Supekar ◽  
Anne S Gleinich ◽  
Parastoo Azadi

Abstract The current emergence of the novel coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands the development of new therapeutic strategies to prevent rapid progress of mortalities. The coronavirus spike (S) protein, which facilitates viral attachment, entry and membrane fusion is heavily glycosylated and plays a critical role in the elicitation of the host immune response. The spike protein is comprised of two protein subunits (S1 and S2), which together possess 22 potential N-glycosylation sites. Herein, we report the glycosylation mapping on spike protein subunits S1 and S2 expressed on human cells through high-resolution mass spectrometry. We have characterized the quantitative N-glycosylation profile on spike protein and interestingly, observed unexpected O-glycosylation modifications on the receptor-binding domain of spike protein subunit S1. Even though O-glycosylation has been predicted on the spike protein of SARS-CoV-2, this is the first report of experimental data for both the site of O-glycosylation and identity of the O-glycans attached on the subunit S1. Our data on the N- and O-glycosylation are strengthened by extensive manual interpretation of each glycopeptide spectra in addition to using bioinformatics tools to confirm the complexity of glycosylation in the spike protein. The elucidation of the glycan repertoire on the spike protein provides insights into the viral binding studies and more importantly, propels research toward the development of a suitable vaccine candidate.


1990 ◽  
Vol 73 (5) ◽  
pp. 743-749 ◽  
Author(s):  
Uwe M. H. Schrell ◽  
Eric F. Adams ◽  
Rudolf Fahlbusch ◽  
Robert Greb ◽  
Gustav Jirikowski ◽  
...  

✓ Female sex steroid receptors were examined in 50 human cerebral meningiomas. For estrogen receptors, high-affinity binding sites (dissociation constant (Kd): 0.05 to 0.2 nM) were found in the cytosolic fraction with a capacity of less than 4 fmol/mg protein in 10 meningiomas using a dextran-coated charcoal (DCC) assay. In the same cytosolic fraction, the solid-phase enzyme immunoassay revealed only one cytosol with a positive colorimetric reaction equal to 5 fmol/mg protein. However, in the nuclear compartment, none of the tumors stained positively for estrogen receptors with immunohistochemical techniques. In addition, the most convincing evidence for the absence of estrogen receptors was obtained by in situ hybridization using an oligonucleotide probe complementary to a fraction of the human receptor messenger ribonucleic acid (mRNA). In none of the 50 meningiomas was the expression of estrogen mRNA coding for the estrogen receptor detected. For progesterone receptors, high-affinity binding sites (Kd: 0.3 to 2.6 nM) were found in 49 of the 50 tumors using a DCC assay. In the same cytosols, solid-phase enzyme immunoassay revealed that each tumor was positive for progesterone receptors. However, in the nuclear compartment, only five tumors had partially positive staining for progesterone receptors with immunohistochemical techniques. Within the confines of this study, it is concluded that: 1) the estrogen receptor is generally absent in meningioma tissue, and 2) the progesterone receptor is mainly absent in the nuclear compartment, leading to the conclusion that the cytosolic progesterone receptor may be an inactive form. This study suggests that female sex steroid receptors are not primarily involved in the proliferative rate of cerebral meningiomas and that they are of no current significance as markers for adjuvant medical therapy of most meningiomas.


2020 ◽  
Vol 56 (61) ◽  
pp. 8683-8686 ◽  
Author(s):  
Xiaoxiao Qi ◽  
Bixia Ke ◽  
Qian Feng ◽  
Deying Yang ◽  
Qinghai Lian ◽  
...  

Herein, we report that a recombinant fusion protein, containing a 457 amino acid SARS-CoV-2 receptor binding domain and a mouse IgG1 Fc domain, could induce highly potent neutralizing antibodies and stimulate humoral and cellular immunity in mice.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Thomas J. Esparza ◽  
Negin P. Martin ◽  
George P. Anderson ◽  
Ellen R. Goldman ◽  
David L. Brody

AbstractThere are currently few approved effective treatments for SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Nanobodies are 12–15 kDa single-domain antibody fragments that can be delivered by inhalation and are amenable to relatively inexpensive large scale production compared to other biologicals. We have isolated nanobodies that bind to the SARS-CoV-2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) with 1–5 nM affinity. The lead nanobody candidate, NIH-CoVnb-112, blocks SARS-CoV-2 spike pseudotyped lentivirus infection of HEK293 cells expressing human ACE2 with an EC50 of 0.3 µg/mL. NIH-CoVnb-112 retains structural integrity and potency after nebulization. Furthermore, NIH-CoVnb-112 blocks interaction between ACE2 and several high affinity variant forms of the spike protein. These nanobodies and their derivatives have therapeutic, preventative, and diagnostic potential.


Sign in / Sign up

Export Citation Format

Share Document