scholarly journals Rhythmic clock gene expression in Atlantic salmon parr brain

2021 ◽  
Author(s):  
Charlotte Bolton ◽  
Michael Bekaert ◽  
Mariann Eilertsen ◽  
Jon Vidar Helvik ◽  
Herve Migaud

To better understand the complexity of clock genes in salmonids, a taxon with an additional whole genome duplication, an analysis was performed to identify and classify gene family members (clock, arntl, period, cryptochrome, nr1d, ror, and csnk1). The majority of clock genes in zebrafish and Northern pike, appeared to be duplicated. In comparison to the 29 clock genes described in zebrafish, 48 clock genes were discovered in salmonid species. There was also evidence of species-specific reciprocal gene losses conserved to the Oncorhynchus sister clade. From the six period genes identified four were highly significantly rhythmically expressed (per1a.1, per1a.2, per1b, per2b) and one was marginally significantly rhythmically expressed (per2a). The transcriptomic study of juvenile Atlantic salmon (parr) brain tissues confirmed gene identification and revealed that there were 1,642 rhythmically expressed genes (p < 0.001), of which 12 were clock genes. The majority of rhythmically expressed genes peaked two hours before and after daylight. These findings provide a foundation for further research into the function of clock genes circadian rhythmicity and the role of an enriched number of clock genes relating to seasonal driven life history in salmonids.

2021 ◽  
Vol 12 ◽  
Author(s):  
Charlotte M. Bolton ◽  
Michaël Bekaert ◽  
Mariann Eilertsen ◽  
Jon Vidar Helvik ◽  
Herve Migaud

To better understand the complexity of clock genes in salmonids, a taxon with an additional whole genome duplication, an analysis was performed to identify and classify gene family members (clock, arntl, period, cryptochrome, nr1d, ror, and csnk1). The majority of clock genes, in zebrafish and Northern pike, appeared to be duplicated. In comparison to the 29 clock genes described in zebrafish, 48 clock genes were discovered in salmonid species. There was also evidence of species-specific reciprocal gene losses conserved to the Oncorhynchus sister clade. From the six period genes identified three were highly significantly rhythmic, and circadian in their expression patterns (per1a.1, per1a.2, per1b) and two was significantly rhythmically expressed (per2a, per2b). The transcriptomic study of juvenile Atlantic salmon (parr) brain tissues confirmed gene identification and revealed that there were 2,864 rhythmically expressed genes (p &lt; 0.001), including 1,215 genes with a circadian expression pattern, of which 11 were clock genes. The majority of circadian expressed genes peaked 2 h before and after daylight. These findings provide a foundation for further research into the function of clock genes circadian rhythmicity and the role of an enriched number of clock genes relating to seasonal driven life history in salmonids.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Donají Chi-Castañeda ◽  
Arturo Ortega

Circadian rhythms are biological oscillations with a period of about 24 hours. These rhythms are maintained by an innate genetically determined time-keeping system called the circadian clock. A large number of the proteins involved in the regulation of this clock are transcription factors controlling rhythmic transcription ofso-calledclock-controlled genes, which participate in a plethora of physiological functions in the organism. In the brain, several areas, besides the suprachiasmatic nucleus, harbor functional clocks characterized by a well-defined time pattern of clock gene expression. This expression rhythm is not restricted to neurons but is also present in glia, suggesting that these cells are involved in circadian rhythmicity. However, only certain glial cells fulfill the criteria to be called glial clocks, namely, to display molecular oscillators based on the canonical clock protein PERIOD, which depends on the suprachiasmatic nucleus for their synchronization. In this contribution, we summarize the current information about activity of the clock genes in glial cells, their potential role as oscillators as well as clinical implications.


2003 ◽  
Vol 63 (5) ◽  
pp. 1208-1218 ◽  
Author(s):  
M. J. Robertson ◽  
K. D. Clarke ◽  
D. A. Scruton ◽  
J. A. Brown

Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 323-335 ◽  
Author(s):  
Bruna Kalil ◽  
Aline B. Ribeiro ◽  
Cristiane M. Leite ◽  
Ernane T. Uchôa ◽  
Ruither O. Carolino ◽  
...  

Abstract In rodents, kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) of the preoptic area are considered to provide a major stimulatory input to the GnRH neuronal network that is responsible for triggering the preovulatory LH surge. Noradrenaline (NA) is one of the main modulators of GnRH release, and NA fibers are found in close apposition to kisspeptin neurons in the RP3V. Our objective was to interrogate the role of NA signaling in the kisspeptin control of GnRH secretion during the estradiol induced LH surge in ovariectomized rats, using prazosin, an α1-adrenergic receptor antagonist. In control rats, the estradiol-induced LH surge at 17 hours was associated with a significant increase in GnRH and kisspeptin content in the median eminence with the increase in kisspeptin preceding that of GnRH and LH. Prazosin, administered 5 and 3 hours prior to the predicted time of the LH surge truncated the LH surge and abolished the rise in GnRH and kisspeptin in the median eminence. In the preoptic area, prazosin blocked the increases in Kiss1 gene expression and kisspeptin content in association with a disruption in the expression of the clock genes, Per1 and Bmal1. Together these findings demonstrate for the first time that NA modulates kisspeptin synthesis in the RP3V through the activation of α1-adrenergic receptors prior to the initiation of the LH surge and indicate a potential role of α1-adrenergic signaling in the circadian-controlled pathway timing of the preovulatory LH surge.


1968 ◽  
Vol 25 (11) ◽  
pp. 2321-2326 ◽  
Author(s):  
G. L. Greer ◽  
U. Paim

As indicated by thin-layer chromatography, hatchery-reared Atlantic salmon parr degraded DDT, absorbed from aqueous suspensions, to DDE and TDE within 9 hr. DDT adsorbed on external surfaces of the salmon was not degraded.


Sign in / Sign up

Export Citation Format

Share Document