scholarly journals Cap-independent translation and a precisely localized RNA sequence enable SARS-CoV-2 to control host translation and escape anti-viral response

2021 ◽  
Author(s):  
Boris Slobodin ◽  
Urmila Sehrawat ◽  
Anastasia Lev ◽  
Ariel Ogran ◽  
Davide Fraticelli ◽  
...  

Translation of SARS-CoV-2-encoded mRNAs by the host ribosomes is essential for its propagation. Following infection, the early expressed viral protein NSP1 binds the ribosome, represses translation and induces mRNA degradation, while the host elicits an anti-viral response. The mechanisms enabling viral mRNAs to escape this multifaceted repression remain obscure. Here we show that expression of NSP1 leads to destabilization of multi-exon cellular mRNAs, while intron-less transcripts, such as viral mRNAs and anti-viral interferon genes, remain relatively stable. We identified a conserved and precisely located cap-proximal RNA element devoid of guanosines that confers resistance to NSP1-mediated translation inhibition. Importantly, the primary sequence rather than the secondary structure is critical for protection. We further show that the genomic 5'UTR of SARS-CoV-2 exhibits an IRES-like activity and promotes expression of NSP1 in an eIF4E-independent and Torin-1 resistant manner. Upon expression, NSP1 enhances cap-independent translation. However, the sub-genomic 5'UTRs are highly sensitive to eIF4E availability, rendering viral propagation partially sensitive to Torin-1. The combined NSP1-mediated degradation of spliced mRNAs and translation inhibition of single-exon genes, along with the unique features present in the viral 5'UTRs, ensure robust expression of viral mRNAs. These features can be exploited as potential therapeutic targets.

2009 ◽  
Vol 07 (02) ◽  
pp. 373-388 ◽  
Author(s):  
HUEI-HUN TSENG ◽  
ZASHA WEINBERG ◽  
JEREMY GORE ◽  
RONALD R. BREAKER ◽  
WALTER L. RUZZO

Non-coding RNAs (ncRNAs) are transcripts that do not code for proteins. Recent findings have shown that RNA-mediated regulatory mechanisms influence a substantial portion of typical microbial genomes. We present an efficient method for finding potential ncRNAs in bacteria by clustering genomic sequences based on homology inferred from both primary sequence and secondary structure. We evaluate our approach using a set of predominantly Firmicutes sequences. Our results showed that, though primary sequence based–homology search was inaccurate for diverged ncRNA sequences, through our clustering method, we were able to infer motifs that recovered nearly all members of most known ncRNA families. Hence, our method shows promise for discovering new families of ncRNA.


2021 ◽  
Author(s):  
Lucija Bujanic ◽  
Olga Shevchuk ◽  
Nicolai von Kuegelgen ◽  
Katarzyna Ludwik ◽  
David Koppstein ◽  
...  

SARS-CoV-2, responsible for the ongoing global pandemic, must overcome a conundrum faced by all viruses. To achieve its own replication and spread, it simultaneously depends on and subverts cellular mechanisms. At the early stage of infection, SARS-CoV-2 expresses the viral nonstructural protein 1 (NSP1), which inhibits host translation by blocking the mRNA entry tunnel on the ribosome; this interferes with the binding of cellular mRNAs to the ribosome. Viral mRNAs, on the other hand, overcome this blockade. We show that NSP1 enhances expression of mRNAs containing the SARS-CoV-2 leader. The first stem-loop (SL1) in viral leader is both necessary and sufficient for this enhancement mechanism. Our analysis pinpoints specific residues within SL1 (three cytosine residues at the positions 15, 19 and 20) and another within NSP1 (R124) which are required for viral evasion, and thus might present promising drug targets. Additionally, we carried out analysis of a functional interactome of NSP1 using BioID and identified components of anti-viral defense pathways. Our analysis therefore suggests a mechanism by which NSP1 inhibits the expression of host genes while enhancing that of viral RNA. This analysis helps reconcile conflicting reports in the literature regarding the mechanisms by which the virus avoids NSP1 silencing.


1988 ◽  
Vol 8 (12) ◽  
pp. 5575-5580
Author(s):  
P Brennwald ◽  
G Porter ◽  
J A Wise

We report the molecular cloning and sequencing of the most abundant trimethylguanosine-capped small nuclear RNA from the fission yeast Schizosaccharomyces pombe, a highly conserved homolog of mammalian U2 small nuclear RNA. This RNA is 186 nucleotides in length, just 2 nucleotides shorter than its human counterpart; this is in contrast to Saccharomyces cerevisiae U2, which is 1,175 nucleotides long. Moreover, the secondary structure of Schizosaccharomyces pombe U2 is virtually identical to that of mammalian U2, including the 3' half of the RNA, which shows limited primary sequence identity. Northern (RNA) blot analysis revealed that the size of this RNA is conserved not only in fission yeasts but in many organisms, including other ascomycetes.


2003 ◽  
Vol 84 (12) ◽  
pp. 3263-3274 ◽  
Author(s):  
Idoia Burgui ◽  
Tomás Aragón ◽  
Juan Ortín ◽  
Amelia Nieto

It has previously been shown that influenza virus NS1 protein enhances the translation of viral but not cellular mRNAs. This enhancement occurs by increasing the rate of translation initiation and requires the 5′UTR sequence, common to all viral mRNAs. In agreement with these findings, we show here that viral mRNAs, but not cellular mRNAs, are associated with NS1 during virus infection. We have previously reported that NS1 interacts with the translation initiation factor eIF4GI, next to its poly(A)-binding protein 1 (PABP1)-interacting domain and that NS1 and eIF4GI are associated in influenza virus-infected cells. Here we show that NS1, although capable of binding poly(A), does not compete with PABP1 for association with eIF4GI and, furthermore, that NS1 and PABP1 interact both in vivo and in vitro in an RNA-independent manner. The interaction maps between residues 365 and 535 in PABP1 and between residues 1 and 81 in NS1. These mapping studies, together with those previously reported for NS1–eIF4GI and PABP1–eIF4GI interactions, imply that the binding of all three proteins would be compatible. Collectively, these and previously published data suggest that NS1 interactions with eIF4GI and PABP1, as well as with viral mRNAs, could promote the specific recruitment of 43S complexes to the viral mRNAs.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Solomon A. Haizel ◽  
Usha Bhardwaj ◽  
Ruben L. Gonzalez ◽  
Dixie J. Goss

2009 ◽  
Vol 83 (11) ◽  
pp. 5329-5338 ◽  
Author(s):  
Frédéric Dallaire ◽  
Paola Blanchette ◽  
Peter Groitl ◽  
Thomas Dobner ◽  
Philip E. Branton

ABSTRACT The human adenovirus E4orf6 and E1B55K proteins promote viral replication by targeting several cellular proteins for degradation. The E4orf6 product has been shown by our group and others to form an E3 ubiquitin ligase complex that contains elongins B and C and cullin family member Cul5. E1B55K associates with this complex, where it is believed to function primarily to introduce bound substrates for degradation via proteasomes. In addition to p53, its first known substrate, the E4orf6/E1B 55-kDa complex (E4orf6/E1B55K) was shown to promote the degradation of Mre11 and DNA ligase IV; however, additional substrates are believed to exist. This notion is strengthened by the fact that none of these substrates seems likely to be associated with additional functions shown to be mediated by the E4orf6-associated E3 ubiquitin ligase complex, including export of late viral mRNAs and blockage of export of the bulk cellular mRNAs from the nucleus. In an attempt to identify new E4orf6/E1B55K substrates, we undertook a proteomic screen using human p53-null, non-small-cell lung carcinoma H1299 cells expressing either E4orf6 protein alone or in combination with E1B55K through infection by appropriate adenovirus vectors. One cellular protein that appeared to be degraded by E1B55K in combination with the E4orf6 protein was a species of molecular mass ∼130 kDa that was identified as the integrin α3 subunit (i.e., very late activation antigen 3 alpha subunit). Preliminary analyses suggested that degradation of α3 may play a role in promoting release and spread of progeny virions.


2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Xiaojuan Liu ◽  
Jing Jin ◽  
Ping Qiu ◽  
Fangluan Gao ◽  
Wenzhong Lin ◽  
...  

ABSTRACTMost segmented negative-sense RNA viruses employ a process termed cap snatching, during which they snatch capped RNA leaders from host cellular mRNAs and use the snatched leaders as primers for transcription, leading to the synthesis of viral mRNAs with 5′ heterogeneous sequences (HSs). With traditional methods, only a few HSs can be determined, and identification of their donors is difficult. Here, the mRNA 5′ ends ofRice stripe tenuivirus(RSV) andRice grassy stunt tenuivirus(RGSV) and those of their host rice were determined by high-throughput sequencing. Millions of tenuiviral HSs were obtained, and a large number of them mapped to the 5′ ends of corresponding host cellular mRNAs. Repeats of the dinucleotide AC, which are complementary to the U1G2of the tenuiviral template 3′-U1G2U3G4UUUCG, were found to be prevalent at the 3′ termini of tenuiviral HSs. Most of these ACs did not match host cellular mRNAs, supporting the idea that tenuiviruses use the prime-and-realign mechanism during cap snatching. We previously reported a greater tendency of RSV than RGSV to use the prime-and-realign mechanism in transcription with leaders cap snatched from a coinfecting reovirus. Besides confirming this observation in natural tenuiviral infections, the data here additionally reveal that RSV has a greater tendency to use this mechanism in transcribing genomic than in transcribing antigenomic templates. The data also suggest that tenuiviruses cap snatch host cellular mRNAs from translation- and photosynthesis-related genes, and capped RNA leaders snatched by tenuiviruses base pair with U1/U3or G2/G4of viral templates. These results provide unprecedented insights into the cap-snatching process of tenuiviruses.IMPORTANCEMany segmented negative-sense RNA viruses (segmented NSVs) are medically or agriculturally important pathogens. The cap-snatching process is a promising target for the development of antiviral strategies against this group of viruses. However, many details of this process remain poorly characterized. Tenuiviruses constitute a genus of agriculturally important segmented NSVs, several members of which are major viral pathogens of rice. Here, we for the first time adopted a high-throughput sequencing strategy to determine the 5′ heterogeneous sequences (HSs) of tenuiviruses and mapped them to host cellular mRNAs. Besides providing deep insights into the cap snatching of tenuiviruses, the data obtained provide clear evidence to support several previously proposed models regarding cap snatching. Curiously and importantly, the data here reveal that not only different tenuiviruses but also the same tenuivirus synthesizing different mRNAs use the prime-and-realign mechanism with different tendencies during their cap snatching.


2006 ◽  
Vol 80 (23) ◽  
pp. 11733-11742 ◽  
Author(s):  
Zackary W. Whitlow ◽  
John H. Connor ◽  
Douglas S. Lyles

ABSTRACT Host protein synthesis is inhibited in cells infected with vesicular stomatitis virus (VSV). It has been proposed that viral mRNAs are subjected to the same inhibition but are predominantly translated because of their abundance. To compare translation efficiencies of viral and host mRNAs during infection, we used an enhanced green fluorescent protein (EGFP) reporter expressed from a recombinant virus or from the host nucleus in stably transfected cells. Translation efficiency of host-derived EGFP mRNA was reduced more than threefold at eight hours postinfection, while viral-derived mRNA was translated around sevenfold more efficiently than host-derived EGFP mRNA in VSV-infected cells. To test whether mRNAs transcribed in the cytoplasm are resistant to shutoff of translation during VSV infection, HeLa cells were infected with a recombinant simian virus 5 (rSV5) that expressed GFP. Cells were then superinfected with VSV or mock superinfected. GFP mRNA transcribed by rSV5 was not resistant to translation inhibition during superinfection with VSV, indicating that transcription in the cytoplasm is not sufficient for preventing translation inhibition. To determine if cis-acting sequences in untranslated regions (UTRs) were involved in preferential translation of VSV mRNAs, we constructed EGFP reporters with VSV or control UTRs and measured the translation efficiency in mock-infected and VSV-infected cells. The presence of VSV UTRs did not affect mRNA translation efficiency in mock- or VSV-infected cells, indicating that VSV mRNAs do not contain cis-acting sequences that influence translation. However, we found that when EGFP mRNAs transcribed by VSV or by the host were translated in vitro, VSV-derived EGFP mRNA was translated 22 times more efficiently than host-derived EGFP mRNA. This indicated that VSV mRNAs do contain cis-acting structural elements (that are not sequence based), which enhance translation efficiency of viral mRNAs.


Sign in / Sign up

Export Citation Format

Share Document