scholarly journals Subjective social isolation is linked to subregional alterations in hippocampus-default network co-variation

2021 ◽  
Author(s):  
Chris Zajner ◽  
Robert Nathan Spreng ◽  
Danilo Bzdok

Social interaction complexity makes humans unique. But in times of social deprivation this strength risks to expose important vulnerabilities. Human social neuroscience studies have placed a premium on the default network (DN). In contrast, hippocampus (HC) subfields have been intensely studied in rodents and monkeys. To bridge these two literatures, we here quantified how DN subregions systematically co-vary with specific HC subfields in the context of subjective social isolation (i.e., loneliness). By co-decomposition using structural brain scans of ~40,000 UK Biobank participants, loneliness was specially linked to midline subregions in the uncovered DN patterns. These association cortex signatures coincided with concomitant HC patterns implicating especially CA1 and molecular layer. These patterns also showed a strong affiliation with the fornix white-matter tract and the nucleus accumbens. In addition, separable signatures of structural HC-DN co-variation had distinct associations with the genetic predisposition for loneliness at the population level.

Author(s):  
Chris Zajner ◽  
R. Nathan Spreng ◽  
Danilo Bzdok

Social interaction complexity makes humans unique. But in times of social deprivation this strength risks to expose important vulnerabilities. Human social neuroscience studies have placed a premium on the default network (DN). In contrast, hippocampus (HC) subfields have been intensely studied in rodents and monkeys. To bridge these two literatures, we here quantified how DN subregions systematically co-vary with specific HC subfields in the context of subjective social isolation (i.e., loneliness). By co-decomposition using structural brain scans of ~40,000 UK Biobank participants, loneliness was specially linked to midline subregions in the uncovered DN patterns. These association cortex signatures coincided with concomitant HC patterns implicating especially CA1 and molecular layer. These patterns also showed a strong affiliation with the fornix white-matter tract and the nucleus accumbens. In addition, separable signatures of structural HC-DN co-variation had distinct associations with the genetic predisposition for loneliness at the population level.


2021 ◽  
Author(s):  
Chris Zajner ◽  
Robert N Spreng ◽  
Danilo Bzdok

Elaborate social interaction is a pivotal asset of the human species. The complexity of peoples social lives may constitute the dominating factor in the vibrancy of many individuals environment. The neural substrates linked to social cognition thus appear especially susceptible when people endure periods of social isolation: here, we zoom in on the systematic inter-relationships between two such neural substrates, the allocortical hippocampus (HC) and the neocortical default network (DN). Previous human social neuroscience studies have focused on the DN, while HC subfields have been studied in most detail in rodents and monkeys. To bring into contact these two separate research streams, we directly quantified how DN subregions are coherently co-expressed with specific HC subfields in the context of social isolation. A two-pronged decomposition of structural brain scans from 37,000 UK Biobank participants linked lack of social support to mostly lateral subregions in the DN patterns. This lateral DN association co-occurred with HC patterns that implicated especially subiculum, presubiculum, CA2, CA3, and dentate gyrus. Overall, the subregion divergences within spatially overlapping signatures of HC-DN co-variation followed a clear segregation divide into the left and right brain hemispheres. Separable regimes of structural HC-DN co-variation also showed distinct associations with the genetic predisposition for lacking social support at the population level.


2018 ◽  
Author(s):  
Rodrigo M. Braga ◽  
Koene R. A. Van Dijk ◽  
Jonathan R. Polimeni ◽  
Mark C. Eldaief ◽  
Randy L. Buckner

Examination of large-scale distributed networks within the individual reveals details of cortical network organization that are absent in group-averaged studies. One recent discovery is that a distributed transmodal network, often referred to as the ‘default network’, is comprised of two separate but closely interdigitated networks, only one of which is coupled to posterior parahippocampal cortex. Not all studies of individuals have identified the same networks and questions remain about the degree to which the two networks are separate, particularly within regions hypothesized to be interconnected hubs. Here we replicate the observation of network separation across analytical (seed-based connectivity and parcellation) and data projection (volume and surface) methods in 2 individuals each scanned 31 times. Additionally, 3 individuals were examined with high-resolution fMRI to gain further insight into the anatomical details. The two networks were identified with separate regions localized to adjacent portions of the cortical ribbon, sometimes inside the same sulcus. Midline regions previously implicated as hubs revealed near complete spatial separation of the two networks, displaying a complex spatial topography in the posterior cingulate and precuneus. The network coupled to parahippocampal cortex also revealed a separate region directly within the hippocampus at or near the subiculum. These collective results support that the default network is composed of at least two spatially juxtaposed networks. Fine spatial details and juxta-positions of the two networks can be identified within individuals at high resolution, providing insight into the network organization of association cortex and placing further constraints on interpretation of group-averaged neuroimaging data.


2019 ◽  
Vol 14 (5) ◽  
pp. 1468-1476 ◽  
Author(s):  
Donald M. Lyall ◽  
Simon R. Cox ◽  
Laura M. Lyall ◽  
Carlos Celis-Morales ◽  
Breda Cullen ◽  
...  

Abstract Apolipoprotein (APOE) e4 genotype is an accepted risk factor for accelerated cognitive aging and dementia, though its neurostructural substrates are unclear. The deleterious effects of this genotype on brain structure may increase in magnitude into older age. This study aimed to investigate in UK Biobank the association between APOE e4 allele presence vs. absence and brain imaging variables that have been associated with worse cognitive abilities; and whether this association varies by cross-sectional age. We used brain magnetic resonance imaging (MRI) and genetic data from a general-population cohort: the UK Biobank (N = 8395 after exclusions). We adjusted for the covariates of age in years, sex, Townsend social deprivation scores, smoking history and cardiometabolic diseases. There was a statistically significant association between APOE e4 genotype and increased (i.e. worse) white matter (WM) hyperintensity volumes (standardised beta = 0.088, 95% confidence intervals = 0.036 to 0.139, P = 0.001), a marker of poorer cerebrovascular health. There were no associations with left or right hippocampal, total grey matter (GM) or WM volumes, or WM tract integrity indexed by fractional anisotropy (FA) and mean diffusivity (MD). There were no statistically significant interactions with age. Future research in UK Biobank utilising intermediate phenotypes and longitudinal imaging hold significant promise for this area, particularly pertaining to APOE e4’s potential link with cerebrovascular contributions to cognitive aging.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Nathan Spreng ◽  
Emile Dimas ◽  
Laetitia Mwilambwe-Tshilobo ◽  
Alain Dagher ◽  
Philipp Koellinger ◽  
...  

AbstractHumans survive and thrive through social exchange. Yet, social dependency also comes at a cost. Perceived social isolation, or loneliness, affects physical and mental health, cognitive performance, overall life expectancy, and increases vulnerability to Alzheimer’s disease-related dementias. Despite severe consequences on behavior and health, the neural basis of loneliness remains elusive. Using the UK Biobank population imaging-genetics cohort (n = ~40,000, aged 40–69 years when recruited, mean age = 54.9), we test for signatures of loneliness in grey matter morphology, intrinsic functional coupling, and fiber tract microstructure. The loneliness-linked neurobiological profiles converge on a collection of brain regions known as the ‘default network’. This higher associative network shows more consistent loneliness associations in grey matter volume than other cortical brain networks. Lonely individuals display stronger functional communication in the default network, and greater microstructural integrity of its fornix pathway. The findings fit with the possibility that the up-regulation of these neural circuits supports mentalizing, reminiscence and imagination to fill the social void.


2020 ◽  
Vol 38 (12) ◽  
pp. 2482-2489
Author(s):  
Amy C. Ferguson ◽  
Rachana Tank ◽  
Laura M. Lyall ◽  
Joey Ward ◽  
Paul Welsh ◽  
...  
Keyword(s):  

Intelligence ◽  
2019 ◽  
Vol 76 ◽  
pp. 101376 ◽  
Author(s):  
S.R. Cox ◽  
S.J. Ritchie ◽  
C. Fawns-Ritchie ◽  
E.M. Tucker-Drob ◽  
I.J. Deary

2016 ◽  
Vol 26 (22) ◽  
pp. 3083-3089 ◽  
Author(s):  
W. David Hill ◽  
Saskia P. Hagenaars ◽  
Riccardo E. Marioni ◽  
Sarah E. Harris ◽  
David C.M. Liewald ◽  
...  

2021 ◽  
Author(s):  
Rachana Tank ◽  
Joey Ward ◽  
Kristin E. Flegal ◽  
Daniel Smith ◽  
Mark E.S. Bailey ◽  
...  

Background and purpose: Previous studies testing associations between polygenic risk for late-onset Alzheimer’s disease (LOAD-PGR) and brain magnetic resonance imaging (MRI) measures have been limited by small samples and inconsistent consideration of potential confounders. This study investigates whether higher LOAD-PGR is associated with differences in structural brain imaging and cognitive values in a relatively large sample of non-demented, generally healthy adults (UK Biobank). Method: Summary statistics were used to create PGR scores for n=32,790 participants using LDpred. Outcomes included 12 structural MRI volumes and 6 concurrent cognitive measures. Models were adjusted for age, sex, body mass index, genotyping chip, 8 principal components, lifetime smoking, apolipoprotein (APOE) e4 genotype and socioeconomic deprivation. We tested for statistical interactions between APOE e4 allele dose and LOAD-PGR vs. all outcomes. Results: In fully adjusted models, LOAD-PGR was associated with worse fluid intelligence (standardised beta [β] = -0.080 per LOAD-PGR standard deviation, p = 0.002), matrix completion (β = -0.102, p = 0.003), smaller left hippocampal total (β = -0.118, p = 0.002) and body (β = -0.069, p = 0.002) volumes, but not other hippocampal subdivisions. There were no significant APOE x LOAD-PGR score interactions for any outcomes in fully adjusted models. Discussion: This is the largest study to date investigating LOAD-PGR and non-demented structural brain MRI and cognition phenotypes. LOAD-PGR was associated with smaller hippocampal volumes and aspects of cognitive ability in healthy adults, and could supplement APOE status in risk stratification of cognitive impairment/LOAD.


Sign in / Sign up

Export Citation Format

Share Document