scholarly journals Evolutionary history of mammalian UDP-glucuronosyltransferase (UGT)1 and UGT2 families: the emergence of UGT2B subfamily in eutherians after the diversification of flowering plants

2021 ◽  
Author(s):  
Yusuke K. Kawai ◽  
Kasumi Sano ◽  
Yoshinori Ikenaka ◽  
Shouta M.M. Nakayama ◽  
Mitsuki Kondo ◽  
...  

AbstractThe UDP-glucuronosyltransferase (UGT) gene family is responsible for the transfer of glucuronic acid to exogenous and endogenous chemicals. Based on the highly diversified number of genes, the mammalian UGT1A and UGT2B subfamily genes are believed to be involved in the conjugation reactions of xenobiotic metabolism. However, it is speculated that the UGT2 family genes are not involved in the xenobiotic metabolism of avian species due to the less diverse number of genes. In this study, we aimed to investigate the evolutionary history of mammalian UGT1 and UGT2 family genes and determine when the diversification of UGT2B genes occurred. We also attempted to identify the main factors responsible for the diversification of UGT genes. By examining the genomic information and feeding habits of 67 species representing each mammalian family, we discovered that the UGT2B genes emerged in the Eutheria on or after Cretaceous period and that their number were higher in plant-eating mammals (herbivore or omnivore) than in carnivorous mammals. We also found that the UGT2B genes in some herbivorous mammals underwent positive selection. In contrast, the diversity of the UGT1 family genes was inherited from the common ancestor of birds and mammals. Thus, our findings suggest that the emergence of angiosperms (flowering plants) and the occurrence of “animal–plant warfare” influenced the evolution of this gene family involved in the xenobiotic metabolism of eutherians. Furthermore, future research investigating the marsupials and birds that do not possess UGT2B genes is required to elucidate the mechanisms underlying the metabolism of chemical substances in these species.

2016 ◽  
Author(s):  
Michael S. Barker ◽  
Zheng Li ◽  
Thomas I. Kidder ◽  
Chris R. Reardon ◽  
Zhao Lai ◽  
...  

AbstractPremise of the studyLike many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature.MethodsWe sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy.Key resultsWe found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia.ConclusionsOur analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long-term evolutionary fates and consequences of different ploidal levels.


2018 ◽  
Author(s):  
Juan C. Opazo ◽  
Shigehiro Kuraku ◽  
Kattina Zavala ◽  
Jessica Toloza-Villalobos ◽  
Federico G. Hoffmann

AbstractNodal is a signaling molecule that belongs to the transforming growth factor-beta superfamily that plays key roles during the early stages of development of animals. Nodal forms an heterodimer with a GDF1/3 protein to activate the Nodal pathway. Vertebrates have a paralog of nodal in their genomes labeled Nodal related, but the evolutionary history of these genes is a matter of debate, mainly because of variable numbers of genes in the vertebrate genomes sequenced so far. Thus, the goal of this study was to investigate the evolutionary history of the Nodal and Nodal-related genes with an emphasis in tracking changes in the number of genes among vertebrates. Our results show the presence of two gene lineages (Nodal and Nodal-related) that can be traced back to the ancestor of jawed vertebrates. These lineages have undergone processes of differential retention and lineage-specific expansions. Our results imply that Nodal and Nodal-related duplicated at the latest in the ancestor of gnathostomes, and they still retain a significant level of functional redundancy. By comparing the evolution of the Nodal/Nodal-related with GDF1/3 gene family, it is possible to infer that there are at least four types of heterodimers that can trigger the Nodal pathway among vertebrates.


2007 ◽  
Vol 237 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Nobuyuki Itoh ◽  
David M. Ornitz

2018 ◽  
Author(s):  
Mónica Lopes-Marques ◽  
André M. Machado ◽  
Raquel Ruivo ◽  
Elza Fonseca ◽  
Estela Carvalho ◽  
...  

AbstractFatty acids (FAs) constitute a considerable fraction of all lipid molecules with a fundamental role in numerous physiological processes. In animals, the majority of complex lipid molecules are derived from the transformation of FAs through several biochemical pathways. Yet, for FAs to enroll in these pathways they require an activation step. FA activation is catalyzed by the rate limiting action of Acyl-CoA synthases. Several Acyl-CoA enzyme families have been previously described and classified according to the chain length of FA they process. Here, we address the evolutionary history of the ACSBG gene family which activates, FA with more than 16 carbons. Currently, two different ACSBG gene families, ACSBG1 and ACSBG2, are recognized in vertebrates. We provide evidence that a wider and unequal ACSBG gene repertoire is present in vertebrate lineages. We identify a novel ACSBG-like gene lineage which occurs specifically in amphibians, ray finned fish, coelacanths and chondrichthyes named ACSBG3. Also, we show that the ACSBG2 gene lineage duplicated in the Theria ancestor. Our findings, thus offer a far richer understanding on FA activation in vertebrates and provide key insights into the relevance of comparative and functional analysis to perceive physiological differences, namely those related with lipid metabolic pathways.


2019 ◽  
Author(s):  
Laura Hernández ◽  
Alberto Vicens ◽  
Luis Enrique Eguiarte ◽  
Valeria Souza ◽  
Valerie De Anda ◽  
...  

ABSTRACTDimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is predominantly degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: 1) a recent common ancestor of DmdA and GcvT, 2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and 3) pre-adapted enzymes to DMSP prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to exposition to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent Roseobacter ecoparalogs (copies performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.


2010 ◽  
Vol 10 (1) ◽  
pp. 308 ◽  
Author(s):  
Matteo Citarelli ◽  
Sachin Teotia ◽  
Rebecca S Lamb

2019 ◽  
pp. 196-206
Author(s):  
Kimberley J. Hockings ◽  
Robin I.M. Dunbar

Humans and alcohol have shared a very long history. In this final chapter, we highlight some of the key findings that emerge from the chapters in this book, in particular the evolutionary history of our adaptation to alcohol consumption and the social role that alcohol consumption plays, and has played, in human societies across the world. This raises a major contradiction in the literature, namely the fact that, despite this long history, the medical profession typically views alcohol as destructive. We draw attention to several avenues that would repay future research and how humans’ relationship with alcohol stands to change and evolve.


2018 ◽  
Vol 5 (6) ◽  
pp. 863-869 ◽  
Author(s):  
Jianni Liu ◽  
Rudy Lerosey-Aubril ◽  
Michael Steiner ◽  
Jason A Dunlop ◽  
Degan Shu ◽  
...  

Abstract The rapid rise of arthropods during the Cambrian quickly established some clades, such as the euarthropod stem-group called Radiodonta, as the dominant and most diverse predators in marine ecosystems. Recent discoveries have shown that the size and dietary ecology of radiodontans are far more diverse than previously thought, but little is known about the feeding habits of juveniles. Here, we document a very small (∼18-mm-long), near-complete specimen of the radiodontan Lyrarapax unguispinus from the early Cambrian Chengjiang Biota of China. This specimen is the smallest radiodontan individual known, representing a juvenile instar. Its adult-like morphology—especially the fully developed spinose frontal appendages and tetraradial oral cone—indicates that L. unguispinus was a well-equipped predator at an early developmental stage, similar to modern raptorial euarthropods, such as mantises, mantis shrimps and arachnids. This evidence, coupled with the basal phylogenetic position of radiodontans, confirms that raptorial feeding habits in juvenile euarthropods appeared early in the evolutionary history of the group.


1998 ◽  
Vol 46 (1) ◽  
pp. 102-106 ◽  
Author(s):  
Jean-Luc Desseyn ◽  
Marie-Pierre Buisine ◽  
Nicole Porchet ◽  
Jean-Pierre Aubert ◽  
Pierre Degand ◽  
...  

Gene ◽  
2006 ◽  
Vol 378 ◽  
pp. 74-83 ◽  
Author(s):  
Nicolás Frankel ◽  
Fernando Carrari ◽  
Esteban Hasson ◽  
Norberto D. Iusem

Sign in / Sign up

Export Citation Format

Share Document