scholarly journals Neurodevelopmental clustering of gene expression identifies lipid metabolism genes associated with neuroprotection and neurodegeneration.

2021 ◽  
Author(s):  
Akiva A Kohane ◽  
Tim R Wood

APOE variants present the strongest association with sporadic Alzheimers Disease. APOE is also highly expressed during neurodevelopment in the Central Nervous System (CNS) and has been shown to be neuroprotective in infancy and gestation. We explored other lipid metabolism genes to determine whether they show a similar neurodevelopmental expression trajectory and are associated with neurodegeneration. APOE was by far the most highly expressed of the lipid metabolism genes in the CNS. Two other genes, Apolipoprotein C1 (APOC1) Glutamate-Ammonia Ligase (GLUL, also known as glutamine synthetase), co-clustered with Apolipoprotein E (APOE) in its developmental trajectory in late gestation through early childhood. These three genes highlight brain structures and developmental time-windows distinct from other lipid metabolism genes. In the CNS they are primarily expressed in astrocytes and are implicated in neuroprotection and neurodegeneration.

Gene ◽  
2004 ◽  
Vol 337 ◽  
pp. 91-103 ◽  
Author(s):  
Hidehiko Sugino ◽  
Tomoko Toyama ◽  
Yusuke Taguchi ◽  
Shigeyuki Esumi ◽  
Mitsuhiro Miyazaki ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Zhang ◽  
You Zhai ◽  
Guanzhang Li ◽  
Tao Jiang

Abstract Background Glioma is the most common and fatal type of nerve neoplasm in the central nervous system. Several biomarkers have been considered for prognosis prediction, which is not accurate enough. We aimed to carry out a gene signature related to the expression of immune checkpoints which was enough for its performance in prediction. Methods Gene expression of immune checkpoints in TGGA database was filtrated. The 5 selected genes underwent verification by COX and Lasso-COX regression. Next, the selected genes were included to build a novel signature for further analysis. Results Patients were sub-grouped into high and low risk according to the novel signature. Immune response, clinicopathologic characters, and survival showed significant differences between those 2 groups. Terms including “naive,” “effector,” and “IL-4” were screened out by GSEA. The results showed strong relevance between the signature and immune response. Conclusions We constructed a gene signature with 5 immune checkpoints. The signature predicted survival effectively. The novel signature performed more functional than previous biomarkers.


2002 ◽  
Vol 16 (6) ◽  
pp. 1378-1385 ◽  
Author(s):  
Karl D. Whitney ◽  
Michael A. Watson ◽  
Jon L. Collins ◽  
William G. Benson ◽  
Tammy M. Stone ◽  
...  

Abstract The nuclear oxysterol receptors liver X receptor-α [LXRα (NR1H3)] and LXRβ (NR1H2) coordinately regulate genes involved in cholesterol homeostasis. Although both LXR subtypes are expressed in the brain, their roles in this tissue remain largely unexplored. In this report, we show that LXR agonists have marked effects on gene expression in murine brain tissue both in vitro and in vivo. In primary astrocyte cultures, LXR agonists regulated several established LXR target genes, including ATP binding cassette transporter A1, and enhanced cholesterol efflux. In contrast, little or no effect on gene expression or cholesterol efflux was detected in primary neuronal cultures. Treatment of mice with a selective LXR agonist resulted in the induction of several LXR target genes related to cholesterol homeostasis in the cerebellum and hippocampus. These data provide the first evidence that the LXRs regulate cholesterol homeostasis in the central nervous system. Because dysregulation of cholesterol balance is implicated in central nervous system diseases such as Alzheimer’s and Niemann-Pick disease, pharmacological manipulation of the LXRs may prove beneficial in the treatment of these disorders.


2021 ◽  
Vol 288 (1945) ◽  
pp. 20202793
Author(s):  
Alexander Yermanos ◽  
Daniel Neumeier ◽  
Ioana Sandu ◽  
Mariana Borsa ◽  
Ann Cathrin Waindok ◽  
...  

Neuroinflammation plays a crucial role during ageing and various neurological conditions, including Alzheimer's disease, multiple sclerosis and infection. Technical limitations, however, have prevented an integrative analysis of how lymphocyte immune receptor repertoires and their accompanying transcriptional states change with age in the central nervous system. Here, we leveraged single-cell sequencing to simultaneously profile B cell receptor and T cell receptor repertoires and accompanying gene expression profiles in young and old mouse brains. We observed the presence of clonally expanded B and T cells in the central nervous system of aged male mice. Furthermore, many of these B cells were of the IgM and IgD isotypes, and had low levels of somatic hypermutation. Integrating gene expression information additionally revealed distinct transcriptional profiles of these clonally expanded lymphocytes. Our findings implicate that clonally related T and B cells in the CNS of elderly mice may contribute to neuroinflammation accompanying homeostatic ageing.


Sign in / Sign up

Export Citation Format

Share Document