scholarly journals High lineage survivorship across the end-Devonian Mass Extinction suggested by a remarkable new Late Devonian actinopterygian

2021 ◽  
Author(s):  
Sam Giles ◽  
Kara Feilich ◽  
Stephanie Pierce ◽  
Matt Friedman

AbstractActinopterygian (ray-finned) fishes represent the principal vertebrate group in aquatic settings. This dominance is often attributed to their apparent success in the aftermath of the end-Devonian extinction. Increases in taxonomic and morphological diversity in the early Carboniferous, coupled with phylogenetic hypotheses implying the survival of few Devonian lineages, contribute to a model of explosive post-extinction radiation. However, most actinopterygian fossils from within a ca. 20 Myr window surrounding the end-Devonian extinction remain poorly known, contributing to uncertainty about these patterns. Here we present detailed anatomical data for an exceptionally preserved but diminutive ray-finned fish from within this gap, ~7 Myr prior to the Devonian-Carboniferous boundary. Representing a new genus and species, it bears a series of derived anatomical features otherwise known only from Carboniferous and younger taxa. It nests phylogenetically within a clade of post-Devonian species and, in an expanded phylogenetic analysis incorporating other previously neglected taxa, draws at least ten lineages of Carboniferous actinopterygians into the Late Devonian. This suggests phenotypically cryptic divergence among ray-finned fishes in the latest Devonian, followed by more conspicuous diversification in feeding and locomotor structures in the Carboniferous. This revised model finds parallels in patterns emerging for other clades, and provides a refined perspective on key events early in the history of a group that today contains half of all living vertebrate species.

2001 ◽  
Vol 75 (6) ◽  
pp. 1202-1213 ◽  
Author(s):  
Robert L. Carroll

The origin of tetrapods from sarcopterygian fish in the Late Devonian is one of the best known major transitions in the history of vertebrates. Unfortunately, extensive gaps in the fossil record of the Lower Carboniferous and Triassic make it very difficult to establish the nature of relationships among Paleozoic tetrapods, or their specific affinities with modern amphibians. The major lineages of Paleozoic labyrinthodonts and lepospondyls are not adequately known until after a 20–30 m.y. gap in the Early Carboniferous fossil record, by which time they were highly divergent in anatomy, ways of life, and patterns of development. An even wider temporal and morphological gap separates modern amphibians from any plausible Permo-Carboniferous ancestors. The oldest known caecilian shows numerous synapomorphies with the lepospondyl microsaur Rhynchonkos. Adult anatomy and patterns of development in frogs and salamanders support their origin from different families of dissorophoid labyrinthodonts. The ancestry of amniotes apparently lies among very early anthracosaurs.


1984 ◽  
Vol 75 (2) ◽  
pp. 275-295 ◽  
Author(s):  
B. J. Bluck

ABSTRACTThe pre-Carboniferous Midland Valley of Scotland comprises three tectonic elements: an arc, a proximal fore-arc basin and a marginal basin. These tectonic elements have been juxtaposed by strike-slip and thrust faulting, both of which have effected a 300% reduction in the width of the orogenic belt.Rocks which span Arenig to Late Devonian or Early Carboniferous times and which are found S of the Highland Boundary fault have no clasts of certain Dalradian provenance despite substantial uplift of the Dalradian block at this time. This, combined with other evidence, suggests the Midland Valley to have been remote from this rapidly uplifting terrane. The Dalradian block, eroded down by c. 410 Ma was thrust southeastwards in Late Devonian–Early Carboniferous times. However, this thrust movement was minor, yielding little sediment, but it caused Dalradian rocks to cover the northern margin of the Midland Valley where (1) the source for part of the Old Red Sandstone rocks existed and (2) the faults along which the Midland Valley block was transported to dock against the Dalradian block are thought to be present. The existing Highland Boundary fault is therefore seen as a late Old Red Sandstone reverse fault which covered more significant older structures.


2002 ◽  
Vol 76 (2) ◽  
pp. 229-238
Author(s):  
Zhong-Qiang Chen ◽  
Neil W. Archbold

Two new genera of the Chonostrophiidae are proposed herein to accommodate the resupinate shells from the Famennian sediments of the Late Devonian in the Santanghu Basin of the Balikun area, Xinjiang Province, northwestern China. Santanghuia santanghuensis new genus and species is distinguishable from other chonostrophiids by the possession of a pair of long dorsal anderidia and absence of a dorsal median septum. Balikunochonetes liaoi new genus and species is distinct because of the presence of a pair of anderidia with secondary anderidia, and a dorsal median septum. Santanghuia new genus is considered to be phylogenetically related to Chonostrophia of late Early to Middle Devonian age, while Balikunochonetes has possibly given rise to Chonostrophiella of Early Devonian age and is a likely ancestor of Tulcumbella of Early Carboniferous age.


2000 ◽  
Vol 74 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Edward B. Daeschler

Recent paleontological fieldwork in the Upper Devonian Catskill Formation at Red Hill in Clinton County, Pennsylvania, USA, has produced a diverse assemblage of vertebrate fossils including early tetrapods. The tetrapod Hynerpeton bassetti was described from the site in 1994 and a recently recognized partial lower jaw of that taxon is described here. Additionally, this paper describes a new Late Devonian tetrapod, Densignathus rowei new genus and species, based on a well-preserved lower jaw. This new taxon is characterized by dramatic widening of the jaw anterior of the adductor fossa, a pronounced twist in the orientation of ventral margin of the jaw, an uninterrupted exposure of Meckelian bone on the mesial surface, and weakly-developed radiating ornament on the lateral surface of the infradentaries. Although phylogenetic resolution within stem tetrapods is lacking, Densignathus rowei, n. gen. and sp., informs several topics including the sequence of character acquisition in the lower jaw, morphological diversity, and paleoecology of the earliest tetrapods.


1990 ◽  
Vol 3 (1) ◽  
pp. 145
Author(s):  
DJ Colgan

This paper is a review of the use of information regarding the presence of duplicate genes and their regulation in systematics. The review concentrates on data derived from protein electrophoresis and restriction fragment length polymorphism analysis. The appearance of a duplication in a subset of a group of species implies that the members of the subset belong to the same clade. Suppression of the duplication may render this clade apparently paraphyletic, but may itself be informative of relations within the lineage through patterns of loss of expression in all, or some tissues, or through restrictions of the formation of functional heteropolymers in polymeric enzymes. Examples are given of studies which have used such information to establish phylogenetic hypotheses at the family level, to identify an auto- or allo-polyploid origin of polyploid species and to determine whether there have been single or multiple origins of such species. The likelihood of homoplasy in the patterns of appearance and regulation of duplicates depends on the molecular basis of the duplication. In particular, the contrast between the expected consequences of tandem duplication and the expression of pseudogenes emphasises the value of determining the mechanism of the original duplication. Many instances of sporadic gene duplication are now known, and polyploidisation is a common event in the evolutionary history of both plants and animals. So the opportunities to discover duplicationrelated characters will arise in many systematic studies. A program is presented to increase the chances that such useful information will be recognisable during the studies.


1983 ◽  
Vol 120 (1) ◽  
pp. 51-58 ◽  
Author(s):  
A. J. Boucot ◽  
C. H. C. Brunton ◽  
J. N. Theron

SummaryThe Devonian brachiopod Tropidoleptus is recognized for the first time in South Africa. It is present in the lower part of the Witteberg Group at four widely separated localities. Data regarding the stratigraphical range of the genus elsewhere, combined with information on recently described fossil plants and vertebrates from underlying strata of the upper Bokkeveld Group, suggest that a Frasnian or even Givetian age is reasonable for the lower part of the Witteberg Group. The recognition of Tropidoleptus in a shallow water, near-shore, molluscan association, at the top of the South African marine Devonian sequence, is similar to its occurrence in Bolivia, and suggests a common Malvinokaffric Realm history of shallowing, prior to later Devonian or early Carboniferous non-marine sedimentation. It is noteworthy that Tropidoleptus is now known to occur in ecologically suitable environments around the Atlantic, but is absent from these same environments in Asia and Australia. Tropidoleptus is an excellent example of dispersal in geological time — first appearing in northern Europe and Nova Scotia, then elsewhere in eastern North America and North Africa, followed by South America and South Africa, while continuing in North America.


Author(s):  
Sara Fuentes-Soriano ◽  
Elizabeth A. Kellogg

Physarieae is a small tribe of herbaceous annual and woody perennial mustards that are mostly endemic to North America, with its members including a large amount of variation in floral, fruit, and chromosomal variation. Building on a previous study of Physarieae based on morphology and ndhF plastid DNA, we reconstructed the evolutionary history of the tribe using new sequence data from two nuclear markers, and compared the new topologies against previously published cpDNA-based phylogenetic hypotheses. The novel analyses included ca. 420 new sequences of ITS and LUMINIDEPENDENS (LD) markers for 39 and 47 species, respectively, with sampling accounting for all seven genera of Physarieae, including nomenclatural type species, and 11 outgroup taxa. Maximum parsimony, maximum likelihood, and Bayesian analyses showed that these additional markers were largely consistent with the previous ndhF data that supported the monophyly of Physarieae and resolved two major clades within the tribe, i.e., DDNLS (Dithyrea, Dimorphocarpa, Nerisyrenia, Lyrocarpa, and Synthlipsis)and PP (Paysonia and Physaria). New analyses also increased internal resolution for some closely related species and lineages within both clades. The monophyly of Dithyrea and the sister relationship of Paysonia to Physaria was consistent in all trees, with the sister relationship of Nerisyrenia to Lyrocarpa supported by ndhF and ITS, and the positions of Dimorphocarpa and Synthlipsis shifted within the DDNLS Clade depending on the employed data set. Finally, using the strong, new phylogenetic framework of combined cpDNA + nDNA data, we discussed standing hypotheses of trichome evolution in the tribe suggested by ndhF.


Sign in / Sign up

Export Citation Format

Share Document