scholarly journals PatchMAN docking: Modeling peptide-protein interactions in the context of the receptor surface

2021 ◽  
Author(s):  
Alisa Khramushin ◽  
Tomer Tsaban ◽  
Julia Varga ◽  
Orly Avraham ◽  
Ora Schueler-Furman

AbstractPeptide docking can be perceived as a subproblem of protein-protein docking. However, due to the short length and flexible nature of peptides, many do not adopt one defined conformation prior to binding. Therefore, to tackle a peptide docking problem, not only the relative orientation between the two partners, but also the bound conformation of the peptide needs to be modeled. Traditional peptide-centered approaches use information about the peptide sequence to generate a representative conformer ensemble, which can then be rigid body docked to the receptor. Alternatively, one may look at this problem from the viewpoint of the receptor, namely that the protein surface defines the peptide bound conformation.We present PatchMAN (Patch-Motif AligNments), a novel peptide docking approach which uses structural motifs to map the receptor surface with backbone scaffolds extracted from protein structures. On a non-redundant set of protein-peptide complexes, starting from free receptor structures, PatchMAN successfully models and identifies near-native peptide-protein complexes in 62% / 81% within 2.5Å / 5Å RMSD, with corresponding sampling in 81% / 100% of the cases, outperforming other approaches. PatchMAN leverages the observation that structural units of peptides with their binding pocket can be found not only within interfaces, but also within monomers. We show that the conformation of the bound peptide is sampled based on the structural context of the receptor only, without taking into account any sequence information. Beyond peptide docking, this approach opens exciting new avenues to study principles of peptide-protein association, and to the design of new peptide binders.

2008 ◽  
Vol 06 (04) ◽  
pp. 789-810 ◽  
Author(s):  
ZHENGWEI ZHU ◽  
ANDREY TOVCHIGRECHKO ◽  
TATIANA BARONOVA ◽  
YING GAO ◽  
DOMINIQUE DOUGUET ◽  
...  

Structural aspects of protein–protein interactions provided by large-scale, genome-wide studies are essential for the description of life processes at the molecular level. A methodology is developed that applies the protein docking approach (GRAMM), based on the knowledge of experimentally determined protein–protein structures (DOCKGROUND resource) and properties of intermolecular energy landscapes, to genome-wide systems of protein interactions. The full sequence-to-structure-of-complex modeling pipeline is implemented in the Genome Wide Docking Database (GWIDD) resource. Protein interaction data are imported to GWIDD from external datasets of experimentally determined interaction networks. Essential information is extracted and unified to form the GWIDD database. Structures of individual interacting proteins in the database are retrieved (if available) or modeled, and protein complex structures are predicted by the docking program. All protein sequence, structure, and docking information is conveniently accessible through a Web interface.


2021 ◽  
Author(s):  
Tomer Tsaban ◽  
Julia K Varga ◽  
Orly Avraham ◽  
Ziv Ben Aharon ◽  
Alisa Khramushin ◽  
...  

Highly accurate protein structure predictions by the recently published deep neural networks such as AlphaFold2 and RoseTTAFold are truly impressive achievements, and will have a tremendous impact far beyond structural biology. If peptide-protein binding can be seen as a final complementing step in the folding of a protein monomer, we reasoned that these approaches might be applicable to the modeling of such interactions. We present a simple implementation of AlphaFold2 to model the structure of peptide-protein interactions, enabled by linking the peptide sequence to the protein c-terminus via a poly glycine linker. We show on a large non-redundant set of 162 peptide-protein complexes that peptide-protein interactions can indeed be modeled accurately. Importantly, prediction is fast and works without multiple sequence alignment information for the peptide partner. We compare performance on a smaller, representative set to the state-of-the-art peptide docking protocol PIPER-FlexPepDock, and describe in detail specific examples that highlight advantages of the two approaches, pointing to possible further improvements and insights in the modeling of peptide-protein interactions. Peptide-mediated interactions play important regulatory roles in functional cells. Thus the present advance holds much promise for significant impact, by bringing into reach a wide range of peptide-protein complexes, and providing important starting points for detailed study and manipulation of many specific interactions.


2014 ◽  
Vol 169 ◽  
pp. 425-441 ◽  
Author(s):  
Guillaume Levieux ◽  
Guillaume Tiger ◽  
Stéphanie Mader ◽  
Jean-François Zagury ◽  
Stéphane Natkin ◽  
...  

Protein–protein interactions play a crucial role in biological processes. Protein docking calculations' goal is to predict, given two proteins of known structures, the associate conformation of the corresponding complex. Here, we present a new interactive protein docking system, Udock, that makes use of users' cognitive capabilities added up. In Udock, the users tackle simplified representations of protein structures and explore protein–protein interfaces’ conformational space using a gamified interactive docking system with on the fly scoring. We assumed that if given appropriate tools, a naïve user's cognitive capabilities could provide relevant data for (1) the prediction of correct interfaces in binary protein complexes and (2) the identification of the experimental partner in interaction among a set of decoys. To explore this approach experimentally, we conducted a preliminary two week long playtest where the registered users could perform a cross-docking on a dataset comprising 4 binary protein complexes. The users explored almost all the surface of the proteins that were available in the dataset but favored certain regions that seemed more attractive as potential docking spots. These favored regions were located inside or nearby the experimental binding interface for 5 out of the 8 proteins in the dataset. For most of them, the best scores were obtained with the experimental partner. The alpha version of Udock is freely accessible at http://udock.fr.


2021 ◽  
Author(s):  
Tomer Tsaban ◽  
Julia Varga ◽  
Orly Avraham ◽  
Ziv Ben-Aharon ◽  
Alisa Khramushin ◽  
...  

Abstract Highly accurate protein structure predictions by the recently published deep neural networks such as AlphaFold2 and RoseTTAFold are truly impressive achievements, and will have a tremendous impact far beyond structural biology. If peptide-protein binding can be seen as a final complementing step in the folding of a protein monomer, we reasoned that these approaches might be applicable to the modeling of such interactions. We present a simple implementation of AlphaFold2 to model the structure of peptide-protein interactions, enabled by linking the peptide sequence to the protein c-terminus via a poly glycine linker. We show on a large non-redundant set of 162 peptide-protein complexes that peptide-protein interactions can indeed be modeled accurately. Importantly, prediction is fast and works without multiple sequence alignment information for the peptide partner. We compare performance on a smaller, representative set to the state-of-the-art peptide docking protocol PIPER-FlexPepDock, and describe in detail specific examples that highlight advantages of the two approaches, pointing to possible further improvements and insights in the modeling of peptide-protein interactions. Peptide-mediated interactions play important regulatory roles in functional cells. Thus the present advance holds much promise for significant impact, by bringing into reach a wide range of peptide-protein complexes, and providing important starting points for detailed study and manipulation of many specific interactions.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Xuan-Yu Meng ◽  
Yu Xu ◽  
Hong-Xing Zhang ◽  
Mihaly Mezei ◽  
Meng Cui

We present a newly adapted Brownian-Dynamics (BD)-based protein docking method for predicting native protein complexes. The approach includes global BD conformational sampling, compact complex selection, and local energy minimization. In order to reduce the computational costs for energy evaluations, a shell-based grid force field was developed to represent the receptor protein and solvation effects. The performance of this BD protein docking approach has been evaluated on a test set of 24 crystal protein complexes. Reproduction of experimental structures in the test set indicates the adequate conformational sampling and accurate scoring of this BD protein docking approach. Furthermore, we have developed an approach to account for the flexibility of proteins, which has been successfully applied to reproduce the experimental complex structure from the structure of two unbounded proteins. These results indicate that this adapted BD protein docking approach can be useful for the prediction of protein-protein interactions.


2017 ◽  
Vol 114 (9) ◽  
pp. 2224-2229 ◽  
Author(s):  
Daniel A. Weisz ◽  
Haijun Liu ◽  
Hao Zhang ◽  
Sundarapandian Thangapandian ◽  
Emad Tajkhorshid ◽  
...  

Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein–protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the “mass tags” selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein–protein interactions in membrane protein complexes.


2019 ◽  
Author(s):  
Georgy Derevyanko ◽  
Guillaume Lamoureux

AbstractProtein-protein interactions are determined by a number of hard-to-capture features related to shape complementarity, electrostatics, and hydrophobicity. These features may be intrinsic to the protein or induced by the presence of a partner. A conventional approach to protein-protein docking consists in engineering a small number of spatial features for each protein, and in minimizing the sum of their correlations with respect to the spatial arrangement of the two proteins. To generalize this approach, we introduce a deep neural network architecture that transforms the raw atomic densities of each protein into complex three-dimensional representations. Each point in the volume containing the protein is described by 48 learned features, which are correlated and combined with the features of a second protein to produce a score dependent on the relative position and orientation of the two proteins. The architecture is based on multiple layers of SE(3)-equivariant convolutional neural networks, which provide built-in rotational and translational invariance of the score with respect to the structure of the complex. The model is trained end-to-end on a set of decoy conformations generated from 851 nonredundant protein-protein complexes and is tested on data from the Protein-Protein Docking Benchmark Version 4.0.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Wajid Arshad Abbasi ◽  
Adiba Yaseen ◽  
Fahad Ul Hassan ◽  
Saiqa Andleeb ◽  
Fayyaz Ul Amir Afsar Minhas

Abstract Background Determining binding affinity in protein-protein interactions is important in the discovery and design of novel therapeutics and mutagenesis studies. Determination of binding affinity of proteins in the formation of protein complexes requires sophisticated, expensive and time-consuming experimentation which can be replaced with computational methods. Most computational prediction techniques require protein structures that limit their applicability to protein complexes with known structures. In this work, we explore sequence-based protein binding affinity prediction using machine learning. Method We have used protein sequence information instead of protein structures along with machine learning techniques to accurately predict the protein binding affinity. Results We present our findings that the true generalization performance of even the state-of-the-art sequence-only predictor is far from satisfactory and that the development of machine learning methods for binding affinity prediction with improved generalization performance is still an open problem. We have also proposed a sequence-based novel protein binding affinity predictor called ISLAND which gives better accuracy than existing methods over the same validation set as well as on external independent test dataset. A cloud-based webserver implementation of ISLAND and its python code are available at https://sites.google.com/view/wajidarshad/software. Conclusion This paper highlights the fact that the true generalization performance of even the state-of-the-art sequence-only predictor of binding affinity is far from satisfactory and that the development of effective and practical methods in this domain is still an open problem.


2019 ◽  
Vol 20 (S25) ◽  
Author(s):  
Yumeng Yan ◽  
Sheng-You Huang

Abstract Background Protein-protein docking is a valuable computational approach for investigating protein-protein interactions. Shape complementarity is the most basic component of a scoring function and plays an important role in protein-protein docking. Despite significant progresses, shape representation remains an open question in the development of protein-protein docking algorithms, especially for grid-based docking approaches. Results We have proposed a new pairwise shape-based scoring function (LSC) for protein-protein docking which adopts an exponential form to take into account long-range interactions between protein atoms. The LSC scoring function was incorporated into our FFT-based docking program and evaluated for both bound and unbound docking on the protein docking benchmark 4.0. It was shown that our LSC achieved a significantly better performance than four other similar docking methods, ZDOCK 2.1, MolFit/G, GRAMM, and FTDock/G, in both success rate and number of hits. When considering the top 10 predictions, LSC obtained a success rate of 51.71% and 6.82% for bound and unbound docking, respectively, compared to 42.61% and 4.55% for the second-best program ZDOCK 2.1. LSC also yielded an average of 8.38 and 3.94 hits per complex in the top 1000 predictions for bound and unbound docking, respectively, followed by 6.38 and 2.96 hits for the second-best ZDOCK 2.1. Conclusions The present LSC method will not only provide an initial-stage docking approach for post-docking processes but also have a general implementation for accurate representation of other energy terms on grids in protein-protein docking. The software has been implemented in our HDOCK web server at http://hdock.phys.hust.edu.cn/.


2016 ◽  
Vol 113 (52) ◽  
pp. 15018-15023 ◽  
Author(s):  
Juan Rodriguez-Rivas ◽  
Simone Marsili ◽  
David Juan ◽  
Alfonso Valencia

Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.


Sign in / Sign up

Export Citation Format

Share Document