scholarly journals Aversive memory formation in humans is determined by an amygdala-hippocampus phase code

Author(s):  
Manuela Costa ◽  
Diego Lozano-Soldevilla ◽  
Antonio Gil-Nagel ◽  
Rafael Toledano ◽  
Carina Oehrn ◽  
...  

AbstractMemory for aversive events is central to survival, but can also become maladaptive in psychiatric disorders. Emotional memory relies on the amygdala and hippocampus, but the neural dynamics of their communication during emotional memory encoding remain unknown. Using simultaneous intracranial recordings from both structures in human patients, we show that in response to emotionally aversive, but not neutral, visual stimuli, the amygdala transmits unidirectional influence on the hippocampus through theta oscillations. Critically, successful emotional memory encoding depends on the precise amygdala theta phase to which hippocampal gamma activity and neuronal firing couple. The phase difference between subsequently remembered vs. not-remembered emotional stimuli translates to ∼25-45 milliseconds, a time period that enables lagged coherence between amygdala and downstream hippocampal gamma activity. These results reveal a mechanism whereby amygdala theta phase coordinates transient coherence between amygdala and hippocampal gamma activity to facilitate the encoding of aversive memories in humans.

2021 ◽  
Author(s):  
Haoxin Zhang ◽  
Ivan Skelin ◽  
Shiting Ma ◽  
Michelle Paff ◽  
Michael A Yassa ◽  
...  

Intracranial recordings from the human amygdala and the hippocampus during an emotional memory encoding and discrimination task reveal increased awake sharp-wave/ripples (aSWR) after encoding of emotional compared to neutral stimuli. Further, post-encoding aSWR-locked memory reinstatement in the amygdala and the hippocampus was predictive of later memory discrimination. These findings provide electrophysiological evidence that post-encoding aSWRs enhance memory for emotional events.


2010 ◽  
Vol 48 (12) ◽  
pp. 3459-3469 ◽  
Author(s):  
Vishnu P. Murty ◽  
Maureen Ritchey ◽  
R. Alison Adcock ◽  
Kevin S. LaBar

2019 ◽  
Author(s):  
Chaitanya Ganne ◽  
Walter Hinds ◽  
James Kragel ◽  
Xiaosong He ◽  
Noah Sideman ◽  
...  

AbstractHigh-frequency gamma activity of verbal-memory encoding using invasive-electroencephalogram coupled has laid the foundation for numerous studies testing the integrity of memory in diseased populations. Yet, the functional connectivity characteristics of networks subserving these HFA-memory linkages remains uncertain. By integrating this electrophysiological biomarker of memory encoding from IEEG with resting-state BOLD fluctuations, we estimated the segregation and hubness of HFA-memory regions in drug-resistant epilepsy patients and matched healthy controls. HFA-memory regions express distinctly different hubness compared to neighboring regions in health and in epilepsy, and this hubness was more relevant than segregation in predicting verbal memory encoding. The HFA-memory network comprised regions from both the cognitive control and primary processing networks, validating that effective verbal-memory encoding requires multiple functions, and is not dominated by a central cognitive core. Our results demonstrate a tonic intrinsic set of functional connectivity, which provides the necessary conditions for effective, phasic, task-dependent memory encoding.HighlightsHigh frequency memory activity in IEEG corresponds to specific BOLD changes in resting-state data.HFA-memory regions had lower hubness relative to control brain nodes in both epilepsy patients and healthy controls.HFA-memory network displayed hubness and participation (interaction) values distinct from other cognitive networks.HFA-memory network shared regional membership and interacted with other cognitive networks for successful memory encoding.HFA-memory network hubness predicted both concurrent task (phasic) and baseline (tonic) verbal-memory encoding success.


2011 ◽  
Vol 49 (4) ◽  
pp. 695-705 ◽  
Author(s):  
Vishnu P. Murty ◽  
Maureen Ritchey ◽  
R. Alison Adcock ◽  
Kevin S. LaBar

NeuroImage ◽  
2020 ◽  
Vol 207 ◽  
pp. 116340 ◽  
Author(s):  
Joan Duprez ◽  
Rasa Gulbinaite ◽  
Michael X. Cohen

1994 ◽  
Vol 72 (4) ◽  
pp. 1654-1673 ◽  
Author(s):  
M. A. Lebedev ◽  
J. M. Denton ◽  
R. J. Nelson

1. Primary somatosensory cortical (SI) neurons exhibit characteristic activity before the initiation of movements. This premovement activity (PMA) may result from centrally generated as well as from peripheral inputs. We examined PMA for 55 SI neurons (10, 13, 28, and 4 in areas 3a, 3b, 1, and 2, respectively) with activity that was entrained to vibrotactile stimulation (i.e., was temporally correlated with the stimulus). We sought to determine whether the temporal characteristics of vibration-entrained discharges would change throughout the reaction time period, and, if they did, whether these changes might be accounted for by central inputs. 2. Monkeys made wrist flexions and extensions in response to sinusoidal vibration (27, 57, or 127 Hz) of their palms. Vibration remained on until the animal moved at least 5 degrees from the initial hold position. Mean firing rate (MFR), a measure of the level of activity, was derived from the number of spikes per vibratory cycle. The correlation between the vibration and the neuronal firing was described by the mean phase (MP) of the vibratory cycle at which spikes occurred. The degree of entrainment was quantified as synchronicity (Synch), a statistical parameter that could change from 0 for no entrainment to 1 for responses at a constant phase. 3. Premovement MFR increases (activation) and decreases (suppression) were observed. Moreover, two changes in MFR often were observed for the same neuron (2-event PMA). Many MFR shifts, especially the first in the two-event PMA, preceded electromyographic (EMG) onset. The pre-EMG MFR shifts more often had the same sign both for flexion and extension movements rather than having opposite signs. However, with equal frequency, post-EMG PMA events had the same or opposite sign for different movement directions. We suggest that the pre-EMG PMA has an origin different from movement-related peripheral reafference. 4. Premovement activation was accompanied by shifts of MP corresponding to earlier responses to the ongoing vibratory stimulus and by decreases of response Synch. Premovement suppression was not associated with consistent shifts of MP and Synch. We suggest that during premovement activation, asynchronous (uncorrelated with vibration) signals are integrated with the vibratory input. These asynchronous signals may make neurons more likely to discharge and to do so earlier with respect to the vibratory stimulus. The asynchronous component may also disrupt the vibration-entrained activity pattern.(ABSTRACT TRUNCATED AT 400 WORDS)


PLoS ONE ◽  
2011 ◽  
Vol 6 (6) ◽  
pp. e21356 ◽  
Author(s):  
Esther Berendina Meeuwissen ◽  
Atsuko Takashima ◽  
Guillén Fernández ◽  
Ole Jensen

Sign in / Sign up

Export Citation Format

Share Document