scholarly journals Remotely detected plant function in two midwestern prairie grassland experiments reveals belowground processes

2021 ◽  
Author(s):  
Jeannine M. Cavender-Bares ◽  
Anna K. Schweiger ◽  
John A. Gamon ◽  
Hamed Gholizadeh ◽  
Kimberly Helzer ◽  
...  

AbstractImaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In grassland systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling, providing a potential link between remote sensing and belowground processes. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic-functional composition of plant communities would be detectable with remote sensing and could be used to characterize belowground plant and soil processes in two grassland biodiversity experiments—the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. Specifically, we tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties microbial processes and community composition. Imaging spectroscopy data were used to map aboveground biomass and green vegetation cover, functional traits and phylogenetic-functional community composition of vegetation. We examined the relationships between the image-derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment—which has low overall diversity and productivity despite high variation in each—belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover. In contrast, at Wood River, where plant diversity and productivity were consistently higher, remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates, while aboveground biomass did not. The strong, contrasting associations between the quantity and chemistry of aboveground inputs with belowground soil processes and properties provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly.

2019 ◽  
Vol 9 (19) ◽  
pp. 3963
Author(s):  
Xiuxiu Feng ◽  
Lu Zhang ◽  
Fazhu Zhao ◽  
Hongying Bai ◽  
Russell Doughty

Microbial biomass, extracellular enzyme activity, and their stoichiometry in soil play an important role in ecosystem dynamics and functioning. To better understand the improvement of sand soil quality and the limitation of soil nutrients after adding feldspathic sandstone, we investigated changes in soil microbial activity after 10 months of mixing feldspathic sandstone and sand, and compared the dynamics with soil properties. We used fumigation extraction to determine soil microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP), and microplate fluorometric techniques to measure soil β-1,4-glucosidase (BG), β-1,4-xylosidase (BX), β-D-cellobiohydrolase (CBH), N-acetyl-β-glucosaminidase (NAG), and Alkaline phosphatase (AKP). We also measured soil organic carbon (SOC), pH, electrical conductivity (EC), soil inorganic carbon (SIC), and soil water content (SWC). Our results showed that the soil microbial biomass C, N, P, and individual extracellular enzyme activities significantly increased in mixed soil. Similarly, the soil microbial biomass C:N, C:P, N:P, MBC:SOC, and BG:NAG significantly increased by 54.3%, 106.3%, 33.1%, 23.0%, and 65.4%, respectively. However, BG:AKP and NAG:AKP decreased by 19.0% and 50.3%, respectively. Additionally, redundancy analysis (RDA) and Pearson’s correlation analysis showed that SWC, SOC, porosity and field capacity were significantly associated with soil microbial biomass indices (i.e., C, N, P, C:N, C:P, N:P in microbial biomass, and MBC:SOC) and extracellular enzyme activity metrics (i.e., individual enzyme activity, ecoenzymatic stoichiometry, and vector characteristics of enzyme activity), while pH, EC, and SIC had no correlation with these indices and metrics. These results indicated that mixing feldspathic sandstone and sand is highly susceptible to changes in soil microbial activity, and the soil N limitation decreased while P became more limited. In summary, our research showed that adding feldspathic sandstone into sand can significantly improve soil quality and provide a theoretical basis for the development of desertified land resources.


Soil Research ◽  
2019 ◽  
Vol 57 (7) ◽  
pp. 779 ◽  
Author(s):  
Yujie Jiao ◽  
Ling Yuan

A rotation of summer tobacco–winter barley–next summer maize (T-B-M) has been suggested by Chinese government programs as an alternative land use practice to replace the conventional tobacco–fallow monoculture (T) and tobacco–barley succession (T-B) management systems. Crop yield in each crop system was recorded from 2010 to 2016 and routine and 454 pyrosequencing approaches were used to evaluate the effects of these cropping systems on organic matter, enzyme activity, and bacterial biomass and community composition within the same soil type. Tobacco leaf yields, barley grains, organic matter, microbial biomass, and enzyme activity (urease, neutral phosphatase, invertase and dehydrogenase) in the soil increased with crop species (but differences were not significant for dehydrogenase activity between T and T-B, and for neutral phosphatase activity between T-B and T-B-M). Indices of richness and diversity of soil bacterial communities also increased as the number of 16S rRNA gene sequences and bacterial phylotypes in the soil increased. The presence of many different bacteria in a soil system may prevent excess reproduction of any single pathogenic bacterium and subsequently reduce the risk of large-scale disease spread. All cropping soils were dominated by Proteobacteria, Acidobacteria, Actinobactria, Bacteroidetes, and unclassified bacteria. Of the 20 predominant bacteria, 13 were commonly found in all soils studied, whereas only four to five were unique in each of the soils examined. This suggests that the presence of those bacteria was more influenced by soil properties than cropping systems in a period of land use.


Sign in / Sign up

Export Citation Format

Share Document