scholarly journals scSNV: accurate dscRNA-seq SNV co-expression analysis using duplicate tag collapsing

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gavin W. Wilson ◽  
Mathieu Derouet ◽  
Gail E. Darling ◽  
Jonathan C. Yeung

AbstractIdentifying single nucleotide variants has become common practice for droplet-based single-cell RNA-seq experiments; however, presently, a pipeline does not exist to maximize variant calling accuracy. Furthermore, molecular duplicates generated in these experiments have not been utilized to optimally detect variant co-expression. Herein, we introduce scSNV designed from the ground up to “collapse” molecular duplicates and accurately identify variants and their co-expression. We demonstrate that scSNV is fast, with a reduced false-positive variant call rate, and enables the co-detection of genetic variants and A>G RNA edits across twenty-two samples.

Author(s):  
Pauline Arnaud ◽  
Hélène Morel ◽  
Olivier Milleron ◽  
Laurent Gouya ◽  
Christine Francannet ◽  
...  

Abstract Purpose Individuals with mosaic pathogenic variants in the FBN1 gene are mainly described in the course of familial screening. In the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more than 5,000 Marfan syndrome (MFS) probands. Methods Next-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored a mosaic pathogenic variant in the FBN1 gene. Results These five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations. Conclusion This underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant calling analysis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4207-4207
Author(s):  
Brian S White ◽  
Irena Lanc ◽  
Daniel Auclair ◽  
Robert Fulton ◽  
Mark A Fiala ◽  
...  

Abstract Background: Multiple myeloma (MM) is a hematologic cancer characterized by a diversity of genetic lesions-translocations, copy number alterations (CNAs), and single nucleotide variants (SNVs). The prognostic value of translocations and of CNAs has been well established. Determining the clinical significance of SNVs, which are recurrently mutated at much lower frequencies, and how this significance is impacted by translocations and CNAs requires additional, large-scale correlative studies. Such studies can be facilitated by cost-effective targeted sequencing approaches. Hence, we designed a single-platform targeted sequencing approach capable of detecting all three variant types. Methods: We designed oligonucleotide probes complementary to the coding regions of 467 genes and to the IgH and MYC loci, allowing a probe to closely match at most 5 regions within the genome. Genes were selected if they were expressed in an independent RNA-seq MM data set and harbored germline SNP-filtered variants that: (1) occurred with frequency >3%, (2) were clustered in hotspots, (3) occurred in recurrently mutated "cancer genes" (as annotated in COSMIC or MutSig), or (4) occurred in genes involved in DNA repair and/or B-cell biology. IgH and MYC tiling was unbiased (with respect to annotated features within the loci) and spanned from 50 kilobasepairs (kbps) upstream of both regions to 50 kbps downstream of IgH and 100 kbps downstream of MYC. Results: We performed targeted sequencing of 96 CD138-enriched samples derived from MM patients, as well as matched peripheral blood leukocyte normal controls. Sequencing depth (mean 107X) was commensurate with that of available exome sequencing data from these samples (mean 71X). Samples harbored a mean of 25 non-silent variants, including those in known MM-associated genes: NRAS (24%), KRAS (22%), FAM46C (17%), TP53 (10%), DIS3 (8%), and BRAF (3%). Variants detected by both platforms showed a strong correlation (r^2 = 0.8). The capture array detected activating, oncogenic variants in NRAS Q61K (n=3 patients) and KRAS G12C/D/R/V (n=5) that were not detected in exome data. Additionally, we found non-silent, capture-specific variants in MTOR (3%) and in two transcription-related genes that have been previously implicated in cancer: ZFHX4 (5%) and CHD3 (5%). To assess the potential role of deep subclonal variants and our ability to detect them, we performed additional sequencing (mean 565X) on six of the tumor/normal pairs. This revealed 14 manually-reviewed, non-silent variants that were not detected by the initial targeted sequencing. These had a mean variant allele frequency of 2.8% and included mutations in DNMT3A and FAM46C. At least one of these 14 variants occurred in five of the six re-sequenced samples. This highlights the importance of this additional depth, which will be used in future studies. Our approach successfully detected CNAs near expected frequencies, including hyperdiploidy (52%), del(13) (43%), and gain of 1q (35%). Similarly, it inferred IgH translocations at expected frequencies: t(4;14) (14%), t(6;14) (3%), t(11;14) (15%), and t(14;20) (1%). As expected, translocations occur predominantly within the IgH constant region, but also frequently 5' (i.e., telomeric) of the IGHM switch region, and occasionally within the V and D regions. We detected MYC -associated translocations, whose frequencies have been the subject of debate, at 10% (n=9 patients), with five involving IgH, three having both partners in or near MYC, and one having both types. Finally, our platform detected novel IgH translocations with partners near DERL3 (n=2), MYCN (n=1), and FLT3 (n=1). Additional evidence suggests that DERL3 and MYCN may be targets of IgH-induced overexpression: of 84 RNA-seq patient samples, six exhibited outlying expression of DERL3, including one sample in which we detected the translocation in corresponding DNA, and one exhibited outlying expression of MYCN. Conclusion: Our MM-specific targeted sequencing strategy is capable of detecting deeply subclonal SNVs, in addition to CNAs and IgH and MYC translocations. Though additional validation is required, particularly with respect to translocation detection, we anticipate that such technology will soon enable clinical testing on a single sequencing platform. Disclosures Vij: Celgene, Onyx, Takeda, Novartis, BMS, Sanofi, Janssen, Merck: Consultancy; Takeda, Onyx: Research Funding.


2020 ◽  
Author(s):  
Luciano Calderón ◽  
Nuria Mauri ◽  
Claudio Muñoz ◽  
Pablo Carbonell-Bejerano ◽  
Laura Bree ◽  
...  

AbstractGrapevine (Vitis vinifera L.) cultivars are clonally propagated to preserve their varietal attributes. However, novel genetic variation still accumulates due to somatic mutations. Aiming to study the potential impact of clonal propagation history on grapevines intra-cultivar genetic diversity, we have focused on ‘Malbec’. This cultivar is appreciated for red wines elaboration, it was originated in Southwestern France and introduced into Argentina during the 1850s. Here, we generated whole-genome resequencing data for four ‘Malbec’ clones with different historical backgrounds. A stringent variant calling procedure was established to identify reliable clonal polymorphisms, additionally corroborated by Sanger sequencing. This analysis retrieved 941 single nucleotide variants (SNVs), occurring among the analyzed clones. Based on a set of validated SNVs, a genotyping experiment was custom-designed to survey ‘Malbec’ genetic diversity. We successfully genotyped 214 samples and identified 14 different clonal genotypes, that clustered into two genetically divergent groups. Group-Ar was driven by clones with a long history of clonal propagation in Argentina, while Group-Fr was driven by clones that have longer remained in Europe. Findings show the ability of such approaches for clonal genotypes identification in grapevines. In particular, we provide evidence on how human actions may have shaped ‘Malbec’ extant genetic diversity pattern.


2021 ◽  
Author(s):  
Kishwar Shafin ◽  
Trevor Pesout ◽  
Pi-Chuan Chang ◽  
Maria Nattestad ◽  
Alexey Kolesnikov ◽  
...  

Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read based phasing. Third-generation nanopore sequence data has demonstrated a long read length, but current interpretation methods for its novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline PEPPER-Margin-DeepVariant that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single nucleotide variant identification method at the whole genome-scale and produces high-quality single nucleotide variants in segmental duplications and low-mappability regions where short-read based genotyping fails. We show that our pipeline can provide highly-contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% to 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance than the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio-HiFi-polished).


2021 ◽  
Author(s):  
Turki Sobahy ◽  
Meshari Alazmi

Genomic medicine stands to be revolutionized through the understanding of single nucleotide variants (SNVs) and their expression in single-gene disorders (mendelian diseases). Computational tools can play a vital role in the exploration of such variations and their pathogenicity. Consequently, we developed the ensemble prediction tool AllelePred to identify deleterious SNVs and disease causative genes. In comparison to other tools, our classifier achieves higher accuracy, precision, F1 score, and coverage for different types of coding variants. Furthermore, this research analyzes and structures 168,945 broad spectrum genetic variants from the genomes of the Saudi population to denote the accuracy of the model. When compared, AllelePred was able to structure the unlabeled Saudi genetic variants of the dataset to mimic the data characteristics of the known labeled data. On this basis, we accumulated a list of highly probable deleterious variants that we recommend for further experimental validation prior to medical diagnostic usage.<br>


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251585
Author(s):  
Pete Heinzelman ◽  
Philip A. Romero

Understanding how human ACE2 genetic variants differ in their recognition by SARS-CoV-2 can facilitate the leveraging of ACE2 as an axis for treating and preventing COVID-19. In this work, we experimentally interrogate thousands of ACE2 mutants to identify over one hundred human single-nucleotide variants (SNVs) that are likely to have altered recognition by the virus, and make the complementary discovery that ACE2 residues distant from the spike interface influence the ACE2-spike interaction. These findings illuminate new links between ACE2 sequence and spike recognition, and could find substantial utility in further fundamental research that augments epidemiological analyses and clinical trial design in the contexts of both existing strains of SARS-CoV-2 and novel variants that may arise in the future.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 1479 ◽  
Author(s):  
Felix Krueger ◽  
Simon R. Andrews

Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base ’N’ and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 1479 ◽  
Author(s):  
Felix Krueger ◽  
Simon R. Andrews

Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data.


2018 ◽  
Vol 18 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Yan Guo ◽  
Hui Yu ◽  
David C Samuels ◽  
Wei Yue ◽  
Scott Ness ◽  
...  

Abstract Through analysis of paired high-throughput DNA-Seq and RNA-Seq data, researchers quickly recognized that RNA-Seq can be used for more than just gene expression quantification. The alternative applications of RNA-Seq data are abundant, and we are particularly interested in its usefulness for detecting single-nucleotide variants, which arise from RNA editing, genomic variants and other RNA modifications. A stunning discovery made from RNA-Seq analyses is the unexpectedly high prevalence of RNA-editing events, many of which cannot be explained by known RNA-editing mechanisms. Over the past 6–7 years, substantial efforts have been made to maximize the potential of RNA-Seq data. In this review we describe the controversial history of mining RNA-editing events from RNA-Seq data and the corresponding development of methodologies to identify, predict, assess the quality of and catalog RNA-editing events as well as genomic variants.


Sign in / Sign up

Export Citation Format

Share Document