scholarly journals Quantifying the propagation of parametric uncertainty on flux balance analysis

2021 ◽  
Author(s):  
Hoang V Dinh ◽  
Debolina Sarkar ◽  
Costas D Maranas

Flux balance analysis (FBA) and associated techniques operating on stoichiometric genome-scale metabolic models play a central role in quantifying metabolic flows and constraining feasible phenotypes. At the heart of these methods lie two important assumptions: (i) the biomass precursors and energy requirements neither change in response to growth conditions nor environmental/genetic perturbations, and (ii) metabolite production and consumption rates are equal at all times (i.e., steady-state). Despite the stringency of these two assumptions, FBA has been shown to be surprisingly robust at predicting cellular phenotypes. In this paper, we formally assess the impact of these two assumptions on FBA results by quantifying how uncertainty in biomass reaction coefficients, and departures from steady-state due to temporal fluctuations could propagate to FBA results. In the first case, conditional sampling of parameter space is required to re-weigh the biomass reaction so as the molecular weight remains equal to 1 g/mmol, and in the second case, metabolite (and elemental) pool conservation must be imposed under temporally varying conditions. Results confirm the importance of enforcing the aforementioned constraints and explain the robustness of FBA biomass yield predictions.

2013 ◽  
Vol 118 (1-2) ◽  
pp. 167-179 ◽  
Author(s):  
Muthusivaramapandian Muthuraj ◽  
Basavaraj Palabhanvi ◽  
Shamik Misra ◽  
Vikram Kumar ◽  
Kumaran Sivalingavasu ◽  
...  

2012 ◽  
Vol 10 (06) ◽  
pp. 1250019 ◽  
Author(s):  
RAJAT K. DE ◽  
NAMRATA TOMAR

Metabolism is a complex process for energy production for cellular activity. It consists of a cascade of reactions that form a highly branched network in which the product of one reaction is the reactant of the next reaction. Metabolic pathways efficiently produce maximal amount of biomass while maintaining a steady-state behavior. The steady-state activity of such biochemical pathways necessarily incorporates feedback inhibition of the enzymes. This observation motivates us to incorporate feedback inhibition for modeling the optimal activity of metabolic pathways using flux balance analysis (FBA). We demonstrate the effectiveness of the methodology on a synthetic pathway with and without feedback inhibition. Similarly, for the first time, the Central Carbon Metabolic (CCM) pathways of Saccharomyces cerevisiae and Homo sapiens have been modeled and compared based on the above understanding. The optimal pathway, which maximizes the amount of the target product(s), is selected from all those obtained by the proposed method. For this, we have observed the concentration of the product inhibited enzymes of CCM pathway and its influence on its corresponding metabolite/substrate. We have also studied the concentration of the enzymes which are responsible for the synthesis of target products. We further hypothesize that an optimal pathway would opt for higher flux rate reactions. In light of these observations, we can say that an optimal pathway should have lower enzyme concentration and higher flux rates. Finally, we demonstrate the superiority of the proposed method by comparing it with the extreme pathway analysis.


2020 ◽  
Vol 117 (10) ◽  
pp. 3006-3017 ◽  
Author(s):  
Carolina Shene ◽  
Paris Paredes ◽  
Liset Flores ◽  
Allison Leyton ◽  
Juan A. Asenjo ◽  
...  

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jack Jansma ◽  
Sahar El Aidy

AbstractThe human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated. Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a personalized manner. This review aims to introduce to experimental biologists the possible applications of flux balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health.


2010 ◽  
Vol 38 (5) ◽  
pp. 1225-1229 ◽  
Author(s):  
Evangelos Simeonidis ◽  
Ettore Murabito ◽  
Kieran Smallbone ◽  
Hans V. Westerhoff

Advances in biological techniques have led to the availability of genome-scale metabolic reconstructions for yeast. The size and complexity of such networks impose limits on what types of analyses one can perform. Constraint-based modelling overcomes some of these restrictions by using physicochemical constraints to describe the potential behaviour of an organism. FBA (flux balance analysis) highlights flux patterns through a network that serves to achieve a particular objective and requires a minimal amount of data to make quantitative inferences about network behaviour. Even though FBA is a powerful tool for system predictions, its general formulation sometimes results in unrealistic flux patterns. A typical example is fermentation in yeast: ethanol is produced during aerobic growth in excess glucose, but this pattern is not present in a typical FBA solution. In the present paper, we examine the issue of yeast fermentation against respiration during growth. We have studied a number of hypotheses from the modelling perspective, and novel formulations of the FBA approach have been tested. By making the observation that more respiration requires the synthesis of more mitochondria, an energy cost related to mitochondrial synthesis is added to the FBA formulation. Results, although still approximate, are closer to experimental observations than earlier FBA analyses, at least on the issue of fermentation.


2022 ◽  
Author(s):  
Javad Zamani ◽  
Sayed-Amir Marashi ◽  
Tahmineh Lohrasebi ◽  
Mohammad-Ali Malboobi ◽  
Esmail Foroozan

Genome-scale metabolic models (GSMMs) have enabled researchers to perform systems-level studies of living organisms. As a constraint-based technique, flux balance analysis (FBA) aids computation of reaction fluxes and prediction of...


Sign in / Sign up

Export Citation Format

Share Document