scholarly journals PCDH7 Promotes Cell Migration by Regulating Myosin Activity

2021 ◽  
Author(s):  
Mohammad Haroon Qureshi ◽  
M. Talha Cinko ◽  
Halil Bayraktar ◽  
Cansu Akkaya ◽  
Altug Kamacioglu ◽  
...  

Cell migration requires spatiotemporally coordinated activities of multicomponent structures including the actomyosin cortex, plasma membrane, adhesion complexes and the polarity proteins. How they function together to drive this complex dynamic process remains an outstanding question. Here, we show that a member of the protocadherin family, PCDH7 displays a polarized localization in migratory cells with a dynamic enrichment at the leading and rear edges. Perturbation of PCDH7 interferes with the migration of nontransformed retinal pigment epithelial cells and invasion of cancer cells. The overexpression of PCDH7 enhances the migration capability of cortical neurons in vivo. PCDH7 interacts with the myosin phosphatase subunits MYPT1 and PP1cβ and it enhances the phosphorylation of regulatory light chain and ERM at the leading and rear edges of migratory cells. The chemical inhibition of phosphatase activity recovers migration phenotypes of PCDH7 knockout cells. We propose that PCDH7 regulate phosphorylation thus activity of myosin and ERM at the polarized cortex by quenching myosin phosphatase that results in a higher persistence of migrating cells. Collectively, our study suggests a new mechanism for the spatial coordination of plasma membrane and the cortex during cell migration.

2019 ◽  
Vol 10 (5) ◽  
pp. 2871-2880 ◽  
Author(s):  
Yong Wang ◽  
Wentao Qi ◽  
Yazhen Huo ◽  
Ge Song ◽  
Hui Sun ◽  
...  

Cyanidin-3-glucoside has efficient protective effects on 4-hydroxynonenal-induced apoptosis, senescence, and angiogenesis in retinal pigment epithelial cells.


2014 ◽  
Vol 205 (2) ◽  
pp. 217-232 ◽  
Author(s):  
Cortney C. Winkle ◽  
Leslie M. McClain ◽  
Juli G. Valtschanoff ◽  
Charles S. Park ◽  
Christopher Maglione ◽  
...  

Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.


2003 ◽  
Vol 51 (1) ◽  
pp. 121-124 ◽  
Author(s):  
Eleonore Fröhlich ◽  
Elke Maier ◽  
Christian Klessen

The retinal pigment epithelium (RPE) shows cell heterogeneity in morphology and enzymatic activity. Routine isolation procedures for RPE cells may reduce enzymatic activity and prevent the quantification of regional enzymatic differences in vivo. We developed a new technique for the isolation of RPE cells based on adhesion of the cells to agarose. The morphology of the isolated cells resembled that of RPE cells in vivo. The cells were viable in the dye exclusion test and showed a histochemical staining pattern as RPE cells in vivo. With this technique, quantitative regional differences in the enzymatic activities were detected.


Author(s):  
Majda Hadziahmetovic ◽  
Goldis Malek

Age-related macular degeneration (AMD) is a neurodegenerative disease of the aging retina, in which patients experience severe vision loss. Therapies available to patients are limited and are only effective in a sub-population of patients. Future comprehensive clinical care depends on identifying new therapeutic targets and adopting a multi-therapeutic approach. With this goal in mind, this review examines the fundamental concepts underlying the development and progression of AMD and re-evaluates the pathogenic pathways associated with the disease, focusing on the impact of injury at the cellular level, with the understanding that critical assessment of the literature may help pave the way to identifying disease-relevant targets. During this process, we elaborate on responses of AMD vulnerable cells, including photoreceptors, retinal pigment epithelial cells, microglia, and choroidal endothelial cells, based on in vitro and in vivo studies, to select stressful agents, and discuss current therapeutic developments in the field, targeting different aspects of AMD pathobiology.


Sign in / Sign up

Export Citation Format

Share Document