scholarly journals Loss of function mutation in ELF4 causes autoinflammatory and immunodeficiency disease in human

Author(s):  
Gan Sun ◽  
Luyao Qiu ◽  
Yunfei An ◽  
Yuan Ding ◽  
Lina Zhou ◽  
...  

Monogenic autoinflammatory diseases (mAIDs) are a heterogeneous group of diseases affecting primarily innate immunity, with various specific genetic causes. Genetic diagnosis of mAIDs can assist in the patient's management and therapy. However, a large number of sporadic and familial cases remain genetically uncharacterized. Here, we described a pediatric patient suffering from recurrent viral and bacterial respiratory infection, refractory oral ulcer and constipation, who was clinically diagnosed of inborn errors of immunity (IEI). In an effort to establish genetic diagnosis, no known causative genes were identified by whole-exome sequencing. However, manually going through bioinformatically predicted candidate genes, we suspected and prioritized ELF4 (chrX:129205133 A>G, c.691T>C, p.W231R) as the genetic cause for our patient. We then evaluated the pathogenicity of this mutation by both various bioinformatic methods and preliminary but definitive experimental approach. Our data suggested that W231R mutant ELF4 is a "loss of function" mutation causing decreased protein stability and decreased trans-activation activity. Thus, we identified a novel mAID, which we termed "X-linked autoinflammatory and immunodeficiency disease associated with ELF4, X-AIDE".

2019 ◽  
Author(s):  
Youngha Lee ◽  
Soojin Park ◽  
Jin Sook Lee ◽  
Soo Yeon Kim ◽  
Jaeso Cho ◽  
...  

AbstractBackgroundA substantial portion of Mendelian disease patients suffers from genetic variants that are inherited in a recessive manner. A precise understanding of pathogenic recessive variants in a population would assist in pre-screening births of such patients. However, a systematic understanding of the contribution of recessive variants to Mendelian diseases is still lacking.MethodsGenetic diagnosis and variant discovery of 553 undiagnosed Korean patients with complex neurodevelopmental problems (KND for Korean NeuroDevelopmental cohort) were performed using whole exome sequencing of patients and their parents. Pathogenic variants were selected and evaluated based on a comparison to patient symptoms and genetic properties of the variants were analyzed.ResultsDisease-causing variants, including newly discovered variants, were identified in in 57.5% of the probands of the KND cohort. Of the 553 patients, 47.4% harbored variants that were previously reported as being pathogenic, and 35.1% of the previous reported pathogenic variants were inherited in a recessive manner. Genes that cause recessive disorders tend to be less constrained by loss-of-function variants and enriched in metabolic and mitochondrial pathways. This observation was applied to an estimation that approximately 1 in 17 healthy Korean individuals carry at least one of these pathogenic variants that develop severe neurodevelopmental problems in a recessive manner. Furthermore, the feasibility of these genes for carrier screening was evaluated.ConclusionsWe suggest that the odds are high for healthy individuals carrying a potentially pathogenic variant, and its genetic properties. Our results will serve as a foundation for recessive variant screening to reduce occurrences of rare Mendelian disease patients. Additionally, our results highlight the utility and necessity of whole exome sequencing-based diagnostics for improving patient care in a country with a centralized medical system.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusions A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Somayeh Khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh-Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods. Methods This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects. Conclusion In this study, whole exome sequencing were used as a first approach strategy to identify the two novel variants in MYO15A in two Iranian families with ARNSHL.


2016 ◽  
Vol 7 ◽  
Author(s):  
Patrick Maffucci ◽  
Charles A. Filion ◽  
Bertrand Boisson ◽  
Yuval Itan ◽  
Lei Shang ◽  
...  

2021 ◽  
Vol 22 ◽  
Author(s):  
Masoud Heidari ◽  
Hamid Gharshasbi ◽  
Alireza Isazadeh ◽  
Morteza Soleyman-Nejad ◽  
Mohammad Hossein Taskhiri ◽  
...  

Background:: Polycystic kidney disease (PKD) is an autosomal recessive disorder resulting from mutations in the PKHD1 gene on chromosome 6 (6p12), a large gene spanning 470 kb of genomic DNA. Objective: The aim of the present study was to report newly identified mutations in the PKHD1 gene in two Iranian families with PKD. Materials and Methods: Genetic alterations of a 3-month-old boy and a 27-year-old girl with PKD were evaluated using whole-exome sequencing. The PCR direct sequencing was performed to analyse the co-segregation of the variants with the disease in the family. Finally, the molecular function of the identified novel mutations was evaluated by in silico study. Results: In the 3 month-old boy, a novel homozygous frameshift mutation was detected in the PKHD1 gene, which can cause PKD. Moreover, we identified three novel heterozygous missense mutations in ATIC, VPS13B, and TP53RK genes. In the 27-year-old woman, with two recurrent abortions history and two infant mortalities at early weeks due to metabolic and/or renal disease, we detected a novel missense mutation on PKHD1 gene and a novel mutation in ETFDH gene. Conclusion: In general, we have identified two novel mutations in the PKHD1 gene. These molecular findings can help accurately correlate genotype and phenotype in families with such disease in order to reduce patient births through preoperative genetic diagnosis or better management of disorders.


Neurology ◽  
2018 ◽  
Vol 91 (23) ◽  
pp. e2170-e2181 ◽  
Author(s):  
Oswaldo Lorenzo-Betancor ◽  
Patrick R. Blackburn ◽  
Emily Edwards ◽  
Rocío Vázquez-do-Campo ◽  
Eric W. Klee ◽  
...  

ObjectiveTo identify novel genes involved in the etiology of intracranial aneurysms (IAs) or subarachnoid hemorrhages (SAHs) using whole-exome sequencing.MethodsWe performed whole-exome sequencing in 13 individuals from 3 families with an autosomal dominant IA/SAH inheritance pattern to look for candidate genes for disease. In addition, we sequenced PCNT exon 38 in a further 161 idiopathic patients with IA/SAH to find additional carriers of potential pathogenic variants.ResultsWe identified 2 different variants in exon 38 from the PCNT gene shared between affected members from 2 different families with either IA or SAH (p.R2728C and p.V2811L). One hundred sixty-four samples with either SAH or IA were Sanger sequenced for the PCNT exon 38. Five additional missense mutations were identified. We also found a second p.V2811L carrier in a family with a history of neurovascular diseases.ConclusionThe PCNT gene encodes a protein that is involved in the process of microtubule nucleation and organization in interphase and mitosis. Biallelic loss-of-function mutations in PCNT cause a form of primordial dwarfism (microcephalic osteodysplastic primordial dwarfism type II), and ≈50% of these patients will develop neurovascular abnormalities, including IAs and SAHs. In addition, a complete Pcnt knockout mouse model (Pcnt−/−) published previously showed general vascular abnormalities, including intracranial hemorrhage. The variants in our families lie in the highly conserved PCNT protein-protein interaction domain, making PCNT a highly plausible candidate gene in cerebrovascular disease.


2021 ◽  
Author(s):  
yanhan deng ◽  
yujian liu ◽  
wei tu ◽  
liu yang

Abstract Background: Hereditary Multiple Osteochondromas(HMO) is a rare genetic musculoskeletal disorder characterized by multiple osteochondromas that form near to the growth plates of many bones. Loss-of-function mutations in EXT1 or EXT2 that encode glycosyltrasferases are the causal mutations for most HMO patients.Methods: After collecting the family history and clinical information, we used Whole-Exome Sequencing to find the pathogenic mutations in one Chinese Hereditary Multiple Exostoses pedigree. Sanger sequencing and relevant online databases were used to validate the screened variants. Lollipop plots were drew to map the reported mutations from online databases (Multiple Osteochondroma Mutation Database and clinvar)on a linear protein domains by MutationMapper.Results: A novel heterozygous splicing-site mutation in gene EXT1 (NM_000127:exon5:c.1417+1G>C,chr8:118834703) was found in this pedigree and mutation spectrum of genes EXT1 and EXT2 were demonstrated.Conclusions: Our results help this pedigree to identify the pathogenic variant and guide the prenatal diagnosis, also expand the mutation spectrum in Hereditary Multiple Osteochondromas.


2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Laura Pezzoli ◽  
Lidia Pezzani ◽  
Ezio Bonanomi ◽  
Chiara Marrone ◽  
Agnese Scatigno ◽  
...  

Whole-exome sequencing (WES) is a powerful and comprehensive tool for the genetic diagnosis of rare diseases, but few reports describe its timely application and clinical impact on infantile cardiomyopathies (CM). We conducted a retrospective analysis of patients with infantile CMs who had trio (proband and parents)-WES to determine whether results contributed to clinical management in urgent and non-urgent settings. Twenty-nine out of 42 enrolled patients (69.0%) received a definitive molecular diagnosis. The mean time-to-diagnosis was 9.7 days in urgent settings, and 17 out of 24 patients (70.8%) obtained an etiological classification. In non-urgent settings, the mean time-to-diagnosis was 225 days, and 12 out of 18 patients (66.7%) had a molecular diagnosis. In 37 out of 42 patients (88.1%), the genetic findings contributed to clinical management, including heart transplantation, palliative care, or medical treatment, independent of the patient’s critical condition. All 29 patients and families with a definitive diagnosis received specific counseling about recurrence risk, and in seven (24.1%) cases, the result facilitated diagnosis in parents or siblings. In conclusion, genetic diagnosis significantly contributes to patients’ clinical and family management, and trio-WES should be performed promptly to be an essential part of care in infantile cardiomyopathy, maximizing its clinical utility.


2020 ◽  
Author(s):  
Chih-Fen Hu ◽  
G. W. Gant Luxton ◽  
Feng-Chin Lee ◽  
Chih-Sin Hsu ◽  
Shih-Ming Huang ◽  
...  

AbstractBackgroundDYT1 dystonia is a neurological movement disorder characterized by painful sustained muscle contractions resulting in abnormal twisting and postures. In a subset of patients, it is caused by a loss-of-function mutation (ΔE302/303; or ΔE) in the luminal ATPases associated with various cellular activities (AAA+) protein torsinA encoded by the TOR1A gene. The low penetrance of the ΔE mutation (∼30-40%) suggests the existence of unknown genetic modifiers of DYT1 dystonia.MethodsTo identify these modifiers, we performed whole exome sequencing of blood leukocyte DNA isolated from two DYT1 dystonia patients, three asymptomatic carriers of the ΔE mutation, and an unaffected adult relative.ResultsA total of 264 DYT1 dystonia-associated variants (DYT1 variants) were identified in 195 genes. Consistent with the emerging view of torsinA as an important regulator of the cytoskeleton, endoplasmic reticulum homeostasis, and lipid metabolism, we found DYT1 variants in genes that encode proteins implicated in these processes. Moreover, 40 DYT1 variants were detected in 32 genes associated with neuromuscular and neuropsychiatric disorders.ConclusionThe DYT1 variants described in this work represent exciting new targets for future studies designed to increase our understanding of the pathophysiology and pathogenesis of DYT1 dystonia.


2021 ◽  
Vol 67 (1) ◽  
pp. 111-116
Author(s):  
Kirill Zagorodnev ◽  
Aleksandr Romanko ◽  
Uliy Gorgul ◽  
Aleksandr Ivantsov ◽  
Anna Sokolenko ◽  
...  

The search for the new hereditary mutations and a precise molecular genetic diagnosis that determines the causative mutation in each specific case of hereditary breast cancer (BC) is a clinically important task since it helps to define the personal therapeutic approach and increase the effectiveness of preventive measures. Using whole-exome sequencing (WES) we analyzed the full spectrum of hereditary variations in 49 Russian patients with clinical signs of a hereditary disease which allowed us to compile a list of 229 candidate probably pathogenic germ-line variants. Then, the selected candidate mutations were validated by Sanger sequencing and molecular-epidemiological studies, the predisposing roles of three oncologically relevant mutations (USP39 c.*208G>C, SLIT3 p.Arg154Cys, and CREB3 p.Lys157Glu) were confirmed. Our candidate genes are first mentioned in connection with the hereditary risk of BC. The final proofs of the causative roles of these variants could be obtained through functional tests as well as via the analysis of the mutations segregation in BC families.


Sign in / Sign up

Export Citation Format

Share Document