scholarly journals A Bidirectional Switch in the Shank3 Phosphorylation State Biases Synapses toward Up or Down Scaling

2021 ◽  
Author(s):  
Gina G Turrigiano ◽  
Chi-Hong Wu ◽  
Vedakumar Tatavarty ◽  
Pierre M Jean-Beltran ◽  
Andrea Guerrero ◽  
...  

Homeostatic synaptic plasticity requires widespread remodeling of synaptic signaling and scaffolding networks, but the role of posttranslational modifications in this process has not been systematically studied. Using deepscale, quantitative analysis of the phosphoproteome in mouse neocortical neurons, we found wide-spread and temporally complex changes during synaptic scaling up and down. We observed 424 bidirectionally modulated phosphosites that were strongly enriched for synapse-associated proteins, including S1539 in the ASD-associated synaptic scaffold protein Shank3. Using a parallel proteomic analysis performed on Shank3 isolated from rat neocortical neurons by immunoaffinity, we identified two sites that were hypo-phosphorylated during scaling up and hyper-phosphorylated during scaling down: one (rat S1615) that corresponded to S1539 in mouse, and a second highly conserved site, rat S1586. The phosphorylation status of these sites modified the synaptic localization of Shank3 during scaling protocols, and dephosphorylation of these sites via PP2A activity was essential for the maintenance of synaptic scaling up. Finally, phosphomimetic mutations at these sites prevented scaling up but not down, while phosphodeficient mutations prevented scaling down but not up. Thus, an activity-dependent switch between hypo- and hyperphosphorylation at S1586/ S1615 of Shank3 enables scaling up or down, respectively. Collectively our data show that activity-dependent phosphoproteome dynamics are important for the functional reconfiguration of synaptic scaffolds, and can bias synapses toward upward or downward homeostatic plasticity.

2015 ◽  
Vol 112 (27) ◽  
pp. E3590-E3599 ◽  
Author(s):  
Melanie A. Gainey ◽  
Vedakumar Tatavarty ◽  
Marc Nahmani ◽  
Heather Lin ◽  
Gina G. Turrigiano

Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing in response to changes in synapse number and strength. Scaling up in response to action-potential blockade is accomplished through increased synaptic accumulation of GluA2-containing AMPA receptors (AMPAR), but the receptor trafficking steps that drive this process remain largely obscure. Here, we show that the AMPAR-binding protein glutamate receptor-interacting protein-1 (GRIP1) is essential for regulated synaptic AMPAR accumulation during scaling up. Synaptic abundance of GRIP1 was enhanced by activity deprivation, directly increasing synaptic GRIP1 abundance through overexpression increased the amplitude of AMPA miniature excitatory postsynaptic currents (mEPSCs), and shRNA-mediated GRIP1 knockdown prevented scaling up of AMPA mEPSCs. Furthermore, knockdown and replace experiments targeting either GRIP1 or GluA2 revealed that scaling up requires the interaction between GRIP1 and GluA2. Finally, GRIP1 synaptic accumulation during scaling up did not require GluA2 binding. Taken together, our data support a model in which activity-dependent trafficking of GRIP1 to synaptic sites drives the forward trafficking and enhanced synaptic accumulation of GluA2-containing AMPAR during synaptic scaling up.


2017 ◽  
Vol 372 (1715) ◽  
pp. 20160157 ◽  
Author(s):  
Melanie A. Gainey ◽  
Daniel E. Feldman

We compare the circuit and cellular mechanisms for homeostatic plasticity that have been discovered in rodent somatosensory (S1) and visual (V1) cortex. Both areas use similar mechanisms to restore mean firing rate after sensory deprivation. Two time scales of homeostasis are evident, with distinct mechanisms. Slow homeostasis occurs over several days, and is mediated by homeostatic synaptic scaling in excitatory networks and, in some cases, homeostatic adjustment of pyramidal cell intrinsic excitability. Fast homeostasis occurs within less than 1 day, and is mediated by rapid disinhibition, implemented by activity-dependent plasticity in parvalbumin interneuron circuits. These processes interact with Hebbian synaptic plasticity to maintain cortical firing rates during learned adjustments in sensory representations. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Pernille Bülow ◽  
Stephanie A. Zlatic ◽  
Peter A. Wenner ◽  
Gary J. Bassell ◽  
Victor Faundez

AbstractHomeostatic plasticity is necessary for the construction and maintenance of functional neuronal networks, but principal molecular mechanisms required for or modified by homeostatic plasticity are not well understood. We recently reported that homeostatic plasticity induced by activity deprivation is dysregulated in cortical neurons from Fragile X Mental Retardation protein (FMRP) knockout mice (Bulow et al. in Cell Rep 26: 1378-1388 e1373, 2019). These findings led us to hypothesize that identifying proteins sensitive to activity deprivation and/or FMRP expression could reveal pathways required for or modified by homeostatic plasticity. Here, we report an unbiased quantitative mass spectrometry used to quantify steady-state proteome changes following chronic activity deprivation in wild type and Fmr1−/y cortical neurons. Proteome hits responsive to both activity deprivation and the Fmr1−/y genotype were significantly annotated to mitochondria. We found an increased number of mitochondria annotated proteins whose expression was sensitive to activity deprivation in Fmr1−/y cortical neurons as compared to wild type neurons. These findings support a novel role of FMRP in attenuating mitochondrial proteome modifications induced by activity deprivation.


2020 ◽  
Author(s):  
Chi-Hong Wu ◽  
Raul Ramos ◽  
Donald B Katz ◽  
Gina G Turrigiano

AbstractAccurate memory formation has been hypothesized to depend on both rapid Hebbian plasticity for initial encoding, and slower homeostatic mechanisms that prevent runaway excitation and subsequent loss of memory specificity. Here, we tested the role of synaptic scaling in shaping the specificity of conditioned taste aversion (CTA) memory, a Hebbian plasticity-dependent form of associative learning. We found that CTA memory initially generalized to non-conditioned tastants (generalized aversion), becoming specific to the conditioned tastant only over the course of many hours. Blocking synaptic scaling in the gustatory cortex (GC) prolonged the duration of the initial generalized aversion and enhanced the persistence of synaptic strength increases observed after CTA. Taken together, these findings demonstrate that synaptic scaling is important for sculpting the specificity of an associative memory and suggest that the relative strengths of Hebbian and homeostatic plasticity can modulate the balance between stable memory formation and generalization.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Giacomo Rapisardi ◽  
Ivan Kryven ◽  
Alex Arenas

AbstractPercolation is a process that impairs network connectedness by deactivating links or nodes. This process features a phase transition that resembles paradigmatic critical transitions in epidemic spreading, biological networks, traffic and transportation systems. Some biological systems, such as networks of neural cells, actively respond to percolation-like damage, which enables these structures to maintain their function after degradation and aging. Here we study percolation in networks that actively respond to link damage by adopting a mechanism resembling synaptic scaling in neurons. We explain critical transitions in such active networks and show that these structures are more resilient to damage as they are able to maintain a stronger connectedness and ability to spread information. Moreover, we uncover the role of local rescaling strategies in biological networks and indicate a possibility of designing smart infrastructures with improved robustness to perturbations.


2021 ◽  
Author(s):  
Pernille Bülow ◽  
Peter A Wenner ◽  
Gary J Bassell ◽  
Victor Faundez

Abstract Homeostatic plasticity is necessary for the construction and maintenance of functional neuronal networks, but principal molecular mechanisms required for or modified by homeostatic plasticity are not well understood. We recently reported that homeostatic plasticity induced by activity deprivation is dysregulated in cortical neurons from Fragile X Mental Retardation protein (FMRP) knockout mice [1]. These findings led us to hypothesize that identifying proteins sensitive to activity deprivation and/or FMRP expression could reveal pathways required for or modified by homeostatic plasticity. Here, we report an unbiased quantitative mass spectrometry used to quantify steady-state proteome changes following chronic activity deprivation in wild type and Fmr1-/y cortical neurons. Proteome hits responsive to both activity deprivation and the Fmr1-/y genotype were significantly annotated to mitochondria. We found an increased number of mitochondria annotated proteins whose expression was sensitive to activity deprivation in Fmr1-/y cortical neurons as compared to wild type neurons. These findings support a novel role of FMRP in attenuating mitochondrial proteome modifications induced by activity deprivation.


2020 ◽  
Vol 4 (4) ◽  
pp. 1160-1180
Author(s):  
Estefanía Estévez-Priego ◽  
Sara Teller ◽  
Clara Granell ◽  
Alex Arenas ◽  
Jordi Soriano

An elusive phenomenon in network neuroscience is the extent of neuronal activity remodeling upon damage. Here, we investigate the action of gradual synaptic blockade on the effective connectivity in cortical networks in vitro. We use two neuronal cultures configurations—one formed by about 130 neuronal aggregates and another one formed by about 600 individual neurons—and monitor their spontaneous activity upon progressive weakening of excitatory connectivity. We report that the effective connectivity in all cultures exhibits a first phase of transient strengthening followed by a second phase of steady deterioration. We quantify these phases by measuring GEFF, the global efficiency in processing network information. We term hyperefficiency the sudden strengthening of GEFF upon network deterioration, which increases by 20–50% depending on culture type. Relying on numerical simulations we reveal the role of synaptic scaling, an activity–dependent mechanism for synaptic plasticity, in counteracting the perturbative action, neatly reproducing the observed hyperefficiency. Our results demonstrate the importance of synaptic scaling as resilience mechanism.


Sign in / Sign up

Export Citation Format

Share Document