scholarly journals Functional strengthening through synaptic scaling upon connectivity disruption in neuronal cultures

2020 ◽  
Vol 4 (4) ◽  
pp. 1160-1180
Author(s):  
Estefanía Estévez-Priego ◽  
Sara Teller ◽  
Clara Granell ◽  
Alex Arenas ◽  
Jordi Soriano

An elusive phenomenon in network neuroscience is the extent of neuronal activity remodeling upon damage. Here, we investigate the action of gradual synaptic blockade on the effective connectivity in cortical networks in vitro. We use two neuronal cultures configurations—one formed by about 130 neuronal aggregates and another one formed by about 600 individual neurons—and monitor their spontaneous activity upon progressive weakening of excitatory connectivity. We report that the effective connectivity in all cultures exhibits a first phase of transient strengthening followed by a second phase of steady deterioration. We quantify these phases by measuring GEFF, the global efficiency in processing network information. We term hyperefficiency the sudden strengthening of GEFF upon network deterioration, which increases by 20–50% depending on culture type. Relying on numerical simulations we reveal the role of synaptic scaling, an activity–dependent mechanism for synaptic plasticity, in counteracting the perturbative action, neatly reproducing the observed hyperefficiency. Our results demonstrate the importance of synaptic scaling as resilience mechanism.

2017 ◽  
Vol 10 ◽  
pp. 117906601773156 ◽  
Author(s):  
Mohammad Althubiti

Spleen tyrosine kinase (SYK) is a cytoplasmic enzyme that promotes survival and proliferation of B cells. SYK inhibition has shown promising results in the treatment of arthritis and chronic lymphocytic leukemia (CLL). However, in other context, it has been shown that SYK overexpression in epithelial cancer cells induced senescence in p53-dependent mechanism, which underscored its antineoplastic activity in vitro. Here, we show that SYK was induced in response of DNA damage in parallel with p53 levels. In addition, using chemical inhibitors of SYK reduced p53 levels in HCT116 and HT1080 cell lines, which underlines the role of SYK inhibition on p53 activity. Furthermore, SYK inhibition modulated the cell growth, which resulted in a decreasing in cell death. Interestingly, SYK expression showed a positive prognosis in patients with solid tumors in correlations with their survival rates, as expected negative correlation was seen between SYK expression and survival rate of patients with CLL. In conclusion, these findings demonstrate that SYK inhibition modulates p53 expression and activity in HCT116 and HT1080 cells. Reconsidering using of SYK inhibitors in clinical setting in the future should be evaluated carefully in accordance with these findings to prevent the formation of secondary malignancies.


2020 ◽  
Author(s):  
Chumin Sun ◽  
K.C. Lin ◽  
Yu-Ting Huang ◽  
Emily S.C. Ching ◽  
Pik-Yin Lai ◽  
...  

AbstractStudying connectivity of neuronal cultures can provide insights for understanding brain networks but it is challenging to reveal neuronal connectivity from measurements. We apply a novel method that uses a theoretical relation between the time-lagged cross-covariance and the equal-time cross-covariance to reveal directed effective connectivity and synaptic weights of cortical neuron cultures at different days in vitro from multielectrode array recordings. Using a stochastic leaky-integrate-and-fire model, we show that the simulated spiking activity of the reconstructed networks can well capture the measured network bursts. The neuronal networks are found to be highly nonrandom with an over-representation of bidirectionally connections as compared to a random network of the same connection probability, with the fraction of inhibitory nodes comparable to the measured fractions of inhibitory neurons in various cortical regions in monkey, and have small-world topology with basic network measures comparable to those of the nematode C. elegans chemical synaptic network. Our analyses further reveal that (i) the excitatory and inhibitory incoming degrees have bimodal distributions the excitatory and inhibitory incoming degrees have bimodal distributions, which are that distributions that have been indicated to be optimal against both random failures and attacks in undirected networks; (ii) the distribution of the physical length of excitatory incoming links has two peaks indicating that excitatory signal is transmitted at two spatial scales, one localized to nearest nodes and the other spatially extended to nodes millimeters away, and the shortest links are mostly excitatory towards excitatory nodes and have larger synaptic weights on average; (iii) the average incoming and outgoing synaptic strength is non-Gaussian with long tails and, in particular, the distribution of outgoing synaptic strength of excitatory nodes with excitatory incoming synaptic strength is lognormal, similar to the measured excitatory postsynaptic potential in rat cortex.Author summaryTo understand how the brain processes signal and carries out its function, it is useful to know the connectivity of the underlying neuronal circuits. For large-scale neuronal networks, it is difficult to measure connectivity directly using electron microscopy techniques and methods that can estimate connectivity from electrophysiological recordings are thus highly desirable. Existing methods focus mainly on estimating functional connectivity, which is defined by statistical dependencies between neuronal activities but the relevant direct casual interactions are captured by effective connectivity. Here we apply a novel covariance-relation based method to estimate the directed effective connectivity and synaptic weights of cortical neuron cultures from recordings of multielectrode array of over 4000 electrodes taken at different days in vitro. The neuronal networks are found to be nonrandom, small-world, excitation/inhibition balanced as measured in monkey cortex, and with feeder hubs. Our analyses further suggest some form of specialisation of nodes in receiving excitatory and inhibitory signals and the transmission of excitatory signals at two spatial scales, one localized to nearest nodes and the other spatially extended to nodes millimeters away, and reveal that the distributions of the average incoming and outgoing synaptic strength are skewed with long tails.


1988 ◽  
Vol 106 (2) ◽  
pp. 269-277 ◽  
Author(s):  
CC Cain ◽  
RF Murphy

To investigate the role of acidification in cell proliferation, several cell lines resistant to chloroquine were isolated with the expectation that some would express altered endocytic acidification. The preliminary characterization of one of these lines, CHL60-64, is described. In contrast to endocytic mutants described previously, the initial phase of endocytic acidification, as measured by transferrin acidification, is normal in this cell line. However, a difference in subsequent endocytic acidification was observed in CHL60-64. In the parental cells, internalized dextran was fully acidified to approximately pH 5.5 within 1 h. In CHL60-64, the pH in the endocytic compartment was only 6.1 after 1 h and remained as high as 5.8 for at least 4 h. After an 8-h incubation, the pH decreased to 5.5, indicating that the second phase of acidification is only slowed in CHL60-64, and not blocked. Consistent with this retarded acidification, ATP-dependent acidification in vitro (as measured by acridine orange accumulation) was reduced in both the lysosomal fraction and the endosomal fraction isolated from CHL60-64. A decrease in the in vivo rate of acridine orange accumulation after perturbation with amine was also observed. In addition to amine resistance and defective acidification, CHL60-64 was found to be resistant to vacuolation in the presence of chloroquine and ammonium chloride, and was resistant to ouabain. Further studies on this new class of endocytosis mutant, in combination with existing mutants, should help to clarify the mechanisms responsible for the regulation of endocytic acidification.


STEMedicine ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. e1 ◽  
Author(s):  
Diletta Pozzi ◽  
Nicolò Meneghetti ◽  
Anjan Roy ◽  
Beatrice Pastore ◽  
Alberto Mazzoni ◽  
...  

BACKGROUND: The spontaneous activity of neuronal networks has been studied in in vitro models such as brain slices and dissociated cultures. However, a comparison between their dynamical properties in these two types of biological samples is still missing and it would clarify the role of architecture in shaping networks’ operation. METHODS: We used calcium imaging to identify clusters of neurons co-activated in hippocampal and cortical slices, as well as in dissociated neuronal cultures, from GAD67-GFP mice. We used statistical tests, power law fitting and neural modelling to characterize the spontaneous events observed. RESULTS:  In slices, we observed intermittency between silent periods, the appearance of Confined Optical Transients (COTs) and of Diffused Optical Transients (DOTs). DOTs in the cortex were preferentially triggered by the activity of neurons located in layer III-IV, poorly coincident with GABAergic neurons. DOTs had a duration of 10.2±0.3 and 8.2±0.4 seconds in cortical and hippocampal slices, respectively, and were blocked by tetrodotoxin, indicating their neuronal origin. The amplitude and duration of DOTs were controlled by NMDA and GABA-A receptors. In dissociated cultures, we observed an increased synchrony in GABAergic neurons and the presence of global synchronous events similar to DOTs, but with a duration shorter than that seen in the native tissues. CONCLUSION: We conclude that DOTs are shaped by the network architecture and by the balance between inhibition and excitation, and that they can be reproduced by network models with a minimal number of parameters.


2020 ◽  
Author(s):  
Francesca Puppo ◽  
Deborah Pré ◽  
Anne Bang ◽  
Gabriel A. Silva

AbstractDespite advancements in the development of cell-based in-vitro neuronal network models, the lack of appropriate computational tools limits their analyses. Methods aimed at deciphering the effective connections between neurons from extracellular spike recordings would increase utility of in-vitro local neural circuits, especially for studies of human neural development and disease based on induced pluripotent stem cells (hiPSC). Current techniques allow statistical inference of functional couplings in the network but are fundamentally unable to correctly identify indirect and apparent connections between neurons, generating redundant maps with limited ability to model the causal dynamics of the network. In this paper, we describe a novel mathematically rigorous, model-free method to map effective - direct and causal - connectivity of neuronal networks from multi-electrode array data. The inference algorithm uses a combination of statistical and deterministic indicators which, first, enables identification of all existing functional links in the network and then, reconstructs the directed and causal connection diagram via a super-selective rule enabling highly accurate classification of direct, indirect and apparent links. Our method can be generally applied to the functional characterization of any in-vitro neuronal networks. Here, we show that, given its accuracy, it can offer important insights into the functional development of in-vitro iPSC-derived neuronal cultures by reconstructing their effective connectivity, thus facilitating future efforts to generate predictive models for neurological disorders, drug testing and neuronal network modeling.


2019 ◽  
Author(s):  
Patricia M. Garay ◽  
Alex Chen ◽  
Takao Tsukahara ◽  
Rafi Kohen ◽  
J. Christian Althaus ◽  
...  

AbstractLong-lasting forms of synaptic plasticity such as synaptic scaling are critically dependent on transcription. Activity-dependent transcriptional dynamics in neurons, however, have not been fully characterized, because most previous efforts relied on measurement of steady-state mRNAs. Here, we profiled transcriptional dynamics of primary neuronal cultures undergoing network activity shifts using nascent RNA sequencing. We found pervasive transcriptional changes, in which ~45% of expressed genes respond to network activity shifts. Notably, the majority of these genes respond to increases or decreases of network activity uniquely, rather than reciprocally. We further linked the chromatin regulator Retinoic acid induced 1 (RAI1), the Smith-Magenis Syndrome gene, to the specific transcriptional program driven by reduced network activity. Finally, we show that RAI1 is essential for homeostatic synaptic upscaling but not downscaling. These results demonstrate the utility of bona fide transcription profiling to discover mechanisms of activity-dependent chromatin remodeling that underlie normal and pathological synaptic plasticity.


2021 ◽  
Author(s):  
Priscila Corrêa Antonello ◽  
Thomas F Varley ◽  
John Beggs ◽  
Marimélia Porcionatto ◽  
Olaf Sporns ◽  
...  

Activity-dependent self-organization plays an important role in the formation of specific and stereotyped connectivity patterns in neural circuits. By combining neuronal cultures, tools with approaches from network neuroscience and information theory, we can study how complex network topology emerges from local neuronal interactions. We constructed effective connectivity networks using a transfer entropy analysis of electrophysiological signals recorded from rat embryo dissociated hippocampal neuron cultures between 6 and 35 days in vitro to investigate how the neuronal network topology evolves during maturation. The methodology for constructing the networks considered the synapse delay and addressed the influence of firing rate and population bursts as well as spurious effects on the inference of connections. We found that the number of links in the networks grew over the course of development, shifting from a segregated to a more integrated architecture. As part of this progression, three significant aspects of complex network topology emerged. In agreement with previous in silico and in vitro studies, a small-world architecture was detected, largely due to strong clustering among neurons. Additionally, the networks developed in a modular community topology, with most modules comprising nearby neurons. Finally, highly active neurons acquired topological characteristics that made them important nodes to the network and integrators of communities. These findings leverage new insights into how neuronal effective network topology relates to neuronal assembly self-organization mechanisms.


2006 ◽  
Vol 291 (5) ◽  
pp. H2301-H2307 ◽  
Author(s):  
Xiang Fang ◽  
Frank M. Faraci ◽  
Terry L. Kaduce ◽  
Shawn Harmon ◽  
Mary L. Modrick ◽  
...  

20-Hydroxyeicosatetraenoic acid (20-HETE), an arachidonic acid (AA) metabolite synthesized by cytochrome P-450 ω-oxidases, is reported to produce vasoconstriction in the cerebral circulation. However, we find that like 14,15-epoxyeicosatrienoic acid (14,15-EET), 20-HETE produces dilation of mouse basilar artery preconstricted with U-46619 in vitro. Indomethacin inhibited the vasodilation produced by 20-HETE but not by 14,15-EET, suggesting a cyclooxygenase (COX)-dependent mechanism. Metabolic studies indicated several mechanisms that may play a role in this process. Mouse brain endothelial cells (MBEC) converted 20-HETE to 20-OH-PGE2, which was as potent as PGE2 in dilating the basilar artery. 20-HETE also stimulated AA release and PGE2 and 6-keto-PGF1α production in MBEC. Furthermore, the basilar artery converted 20-HETE to 20-COOH-AA, which also produced COX-dependent dilation of the basilar artery. 20-COOH-AA increased AA release and PGE2 and 6-keto-PGF1α production by the MBEC, but to a lesser extent than 20-HETE. Whereas the conversion of 20-HETE to 20-OH-PGE2 and production of endogenous prostaglandins probably are primarily responsible for vasodilation, the production of 20-COOH-AA also may contribute to this process.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1949
Author(s):  
Zhifeng Wu ◽  
Yang Zhang ◽  
Xinyang Xu ◽  
Temoor Ahmed ◽  
Yong Yang ◽  
...  

Most endolysins of dsDNA phages are exported by a holin-dependent mechanism, while in some cases endolysins are exported via a holin-independent mechanism. However, it is still unclear whether the same endolysins can be exported by both holin-dependent and holin-independent mechanisms. This study investigated the lysis system of OP2-like phage X2 infecting Xanthomonas oryzae pv. oryzae, causing devastating bacterial leaf blight disease in rice. Based on bioinformatics and protein biochemistry methods, we show that phage X2 employs the classic "holin-endolysin" lysis system. The endolysin acts on the cell envelope and exhibits antibacterial effects in vitro, while the holin facilitates the release of the protein into the periplasm. We also characterized the role of the transmembrane domain (TMD) in the translocation of the endolysin across the inner membrane. We found that the TMD facilitated the translocation of the endolysin via the Sec secretion system. The holin increases the efficiency of protein release, leading to faster and more efficient lysis. Interestingly, in E. coli, the expression of either holin or endolysin with TMDs resulted in the formation of long rod shaped cells. We conclude that the TMD of X2-Lys plays a dual role: One is the transmembrane transport while the other is the inhibition of cell division, resulting in larger cells and thus in a higher number of released viruses per cell.


2020 ◽  
Author(s):  
Tevye Jason Stachniak ◽  
Rahel Kastli ◽  
Olivia Hanley ◽  
Ali Özgür Argunsah ◽  
Theofanis Karayannis

SummaryNeuronal identity is controlled in multiple developmental steps by key transcription factors that determine the unique properties of a cell. During embryogenesis, the transcription factor Prox1 has been shown to regulate VIP interneuron migration, survival, and as a result, circuit integration. Here, we explore the role of Prox1 as a regulator of genetic programs that guide the final specification of VIP interneuron subtypes in early post-natal life. Using in-vitro electrophysiology we find that post-natal removal of Prox1 differentially affects the synaptic integration of VIP bipolar and multipolar subtypes.RNA sequencing reveals that one of the downstream targets of Prox1 is the postsynaptic protein Elfn1, a constitutive regulator of presynaptic release probability. Genetic, pharmacological and electrophysiological experiments demonstrate that knocking out Prox1 reduces Elfn1 function in VIP multipolar but not in bipolar cells. Thus, in addition to the activity-dependent and contextual processes that finalize developmental trajectories, genetic programs engaged by Prox1 control the differentiation and connectivity of VIP interneuron subtypes.


Sign in / Sign up

Export Citation Format

Share Document