scholarly journals Secondary structure of subgenomic RNA M of SARS-CoV-2

2021 ◽  
Author(s):  
Marta Soszynska-Jozwiak ◽  
Ryszard Kierzek ◽  
Elzbieta Kierzek

SARS-CoV-2 belongs the Coronavirinae family. As other coronaviruses, SARS-CoV-2 is enveloped and possesses positive-sense, single-stranded RNA genome of ~30 kb. Genome RNA is used as the template for replication and transcription. During these processes, positive-sense genomic RNA (gRNA) and subgenomic RNAs (sgRNAs) are created. Several studies showed importance of genomic RNA secondary structure in SARS-CoV-2 replication. However, the structure of sgRNAs have remained largely unsolved so far. In this study, we performed probing of sgRNA M of SARS-CoV-2 in vitro. This is the first experimentally informed secondary structure model of sgRNA M, which presents features likely to be important in sgRNA M function. The knowledge about sgRNA M provides insights to better understand virus biology and could be used for designing new therapeutics.

2000 ◽  
Vol 74 (5) ◽  
pp. 2227-2238 ◽  
Author(s):  
Nancy Beerens ◽  
Bep Klaver ◽  
Ben Berkhout

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) reverse transcription is primed by the cellular tRNA3 Lys molecule that binds with its 3′-terminal 18 nucleotides to the fully complementary primer-binding site (PBS) on the viral RNA genome. Besides this complementarity, annealing of the primer may be stimulated by additional base-pairing interactions between other parts of the tRNA molecule and viral sequences flanking the PBS. According to the RNA secondary structure model of the HIV-1 leader region, part of the PBS sequence is involved in base pairing to form a small stem-loop structure, termed the U5-PBS hairpin. This hairpin may be involved in the process of reverse transcription. To study the role of the U5-PBS hairpin in the viral replication cycle, we introduced mutations in the U5 region that affect the stability of this structured RNA motif. Stabilization and destabilization of the hairpin significantly inhibited virus replication. Upon prolonged culturing of the virus mutant with the stabilized hairpin, revertant viruses were obtained with additional mutations that restore the thermodynamic stability of the U5-PBS hairpin. The thermodynamic stability of the U5-PBS hairpin apparently has to stay within narrow limits for efficient HIV-1 replication. Transient transfection experiments demonstrated that transcription of the proviral genomes, translation of the viral mRNAs, and assembly of the virions with a normal RNA content is not affected by the mutations within the U5-PBS hairpin. We show that stabilization of the hairpin reduced the amount of tRNA primer that is annealed to the PBS. Destabilization of the hairpin did not affect tRNA annealing, but the viral RNA-tRNA complex was less stable. These results suggest that the U5-PBS hairpin is involved in correct placement of the tRNA primer on the viral genome. The analysis of virus mutants and revertants and the RNA structure probing experiments presented in this study are consistent with the existence of the U5-PBS hairpin as predicted in the RNA secondary structure model.


Nematology ◽  
2005 ◽  
Vol 7 (6) ◽  
pp. 927-944 ◽  
Author(s):  
Renato Crozzoli ◽  
Franco Lamberti ◽  
Nicola Vovlas ◽  
James Baldwin ◽  
Sergei Subbotin ◽  
...  

AbstractThe suborder Criconematina is a large group of ecto- and endoparasitic nematodes, including several species of major agricultural importance. The D2-D3 expansion segments of the 28S nuclear ribosomal RNA gene were amplified and sequenced from 23 nominal and six unidentified species from the genera Mesocriconema, Criconemoides, Ogma, Criconema, Xenocriconemella, Hemicriconemoides, Hemicycliophora, Paratylenchus, Tylenchulus, Trophonema and Sphaeronema, together with outgroup taxa from Tylenchidae (Aglenchus) and Atylenchidae (Eutylenchus). A sequence alignment optimised using the secondary structure model was analysed using maximum parsimony, maximum likelihood and Bayesian inference approaches under two models. All analyses yielded a similar topology with differences primarily in the position of poorly supported clades. Although some molecular trees differ from the previous morphologically based hypotheses of criconematid phylogeny, maximum likelihood tests did not yield statistically significant differences between some of the tested classical morphological and molecular topologies. DNA data support monophyly for the genera Mesocriconema, Hemicriconemoides and Criconema and reject the hypothesis of a single origin of criconematids with a cuticular sheath or 'double cuticle'. Application of the complex model of rRNA evolution, considering paired nucleotides for the stem and unpaired nucleotides for the loop region, resulted in a majority rule consensus Bayesian tree with unresolved relationships between main clades. This lack of resolution is expected by the low number of independently evolving nucleotides. Sequence divergence in this DNA segment between populations of Mesocriconema xenoplax, M. sphaerocephalum and Hemicriconemoides cocophillus suggest the presence of several sibling species under these taxa names.


1987 ◽  
Vol 7 (9) ◽  
pp. 3194-3198 ◽  
Author(s):  
D Solnick ◽  
S I Lee

We set up an alternative splicing system in vitro in which the relative amounts of two spliced RNAs, one containing and the other lacking a particular exon, were directly proportional to the length of an inverted repeat inserted into the flanking introns. We then used the system to measure the effect of intramolecular complementarity on alternative splicing in vivo. We found that an alternative splice was induced in vivo only when the introns contained more than approximately 50 nucleotides of perfect complementarity, that is, only when the secondary structure was much more stable than most if not all possible secondary structures in natural mRNA precursors. We showed further that intron insertions containing long complements to splice sites and a branch point inhibited splicing in vitro but not in vivo. These results raise the possibility that in cells most pre-mRNA secondary structures either are not maintained long enough to influence splicing choices, or never form at all.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54384 ◽  
Author(s):  
Shreyas S. Athavale ◽  
J. Jared Gossett ◽  
Jessica C. Bowman ◽  
Nicholas V. Hud ◽  
Loren Dean Williams ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 253 ◽  
Author(s):  
Mauricio Comas-Garcia

The packaging of genomic RNA in positive-sense single-stranded RNA viruses is a key part of the viral infectious cycle, yet this step is not fully understood. Unlike double-stranded DNA and RNA viruses, this process is coupled with nucleocapsid assembly. The specificity of RNA packaging depends on multiple factors: (i) one or more packaging signals, (ii) RNA replication, (iii) translation, (iv) viral factories, and (v) the physical properties of the RNA. The relative contribution of each of these factors to packaging specificity is different for every virus. In vitro and in vivo data show that there are different packaging mechanisms that control selective packaging of the genomic RNA during nucleocapsid assembly. The goals of this article are to explain some of the key experiments that support the contribution of these factors to packaging selectivity and to draw a general scenario that could help us move towards a better understanding of this step of the viral infectious cycle.


1980 ◽  
Vol 8 (10) ◽  
pp. 2275-2294 ◽  
Author(s):  
C.R. Woese ◽  
L.J. Magrum ◽  
R. Gupta ◽  
R.B. Siegel ◽  
D.A. Stahl ◽  
...  

1982 ◽  
Vol 10 (15) ◽  
pp. 4679-4685 ◽  
Author(s):  
Bao-Ling Fang ◽  
Raymond De Baere ◽  
Antoon Vandenberghe ◽  
Rupert De Wachter

Sign in / Sign up

Export Citation Format

Share Document