scholarly journals Variation at Spike position 142 in SARS-CoV-2 Delta genomes is a technical artifact caused by dropout of a sequencing amplicon

Author(s):  
Theo Sanderson ◽  
Jeffrey C Barrett

Public SARS-CoV-2 genomes from the Delta lineage show complex and confusing patterns of mutations at Spike codon 142, and at another nearby position, Spike codon 95. It has been hypothesised that these represent recurrent mutations with interesting evolutionary dynamics, and that these mutations may affect viral load. Here we show that these patterns, and the relationship with viral load, are artifacts of sequencing difficulties in this region of the Delta genome caused be a deletion in the binding site for the 72_RIGHT primer of the ARTIC V3 schema. Spike G142D should be considered a lineage-defining mutation of Delta.

2021 ◽  
Vol 6 ◽  
pp. 305
Author(s):  
Theo Sanderson ◽  
Jeffrey C. Barrett

Public SARS-CoV-2 genomes from the Delta lineage show complex and confusing patterns of mutations at Spike codon 142, and at another nearby position, Spike codon 95. It has been hypothesised that these represent recurrent mutations with interesting evolutionary dynamics, and that these mutations may affect viral load. Here we show that these patterns, and the relationship with viral load, are artifacts of sequencing difficulties in this region of the Delta genome caused be a deletion in the binding site for the 72_RIGHT primer of the ARTIC V3 schema. Spike G142D should be considered a lineage-defining mutation of Delta.


1985 ◽  
Vol 230 (1) ◽  
pp. 169-179 ◽  
Author(s):  
M R Edwards ◽  
M I Bird ◽  
E D Saggerson

The overt form of carnitine palmitoyltransferase (CPT1) in rat liver and heart mitochondria was inhibited by DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA. S-Methanesulphonyl-CoA inhibited liver CPT1. The inhibitory potency of DL-2-bromopalmitoyl-CoA was 17 times greater with liver than with heart CPT1. Inhibition of CPT1 by DL-2-bromopalmitoyl-CoA was unaffected by 5,5′-dithiobis-(2-nitrobenzoic acid) or (in liver) by starvation. In experiments in which DL-2-bromopalmitoyl-CoA displaced [14C]malonyl-CoA bound to liver mitochondria, the KD (competing) was 25 times the IC50 for inhibition of CPT1 providing evidence that the malonyl-CoA-binding site is unlikely to be the same as the acyl-CoA substrate site. Bromoacetyl-CoA inhibition of CPT1 was more potent in heart than in liver mitochondria and was diminished by 5,5′-dithiobis-(2-nitrobenzoic acid) or (in liver) by starvation. Bromoacetyl-CoA displaced bound [14C]malonyl-CoA from heart and liver mitochondria. In heart mitochondria this displacement was competitive with malonyl-CoA and was considerably facilitated by L-carnitine. In liver mitochondria this synergism between carnitine and bromoacetyl-CoA was not observed. It is suggested that bromoacetyl-CoA interacts with the malonyl-CoA-binding site of CPT1. L-Carnitine also facilitated the displacement by DL-2-bromopalmitoyl-CoA of [14C]malonyl-CoA from heart, but not from liver, mitochondria. DL-2-Bromopalmitoyl-CoA and bromoacetyl-CoA also inhibited overt carnitine octanoyl-transferase in liver and heart mitochondria. These findings are discussed in relation to inter-tissue differences in (a) the response of CPT1 activity to various inhibitors and (b) the relationship between high-affinity malonyl-CoA-binding sites and those sites for binding of L-carnitine and acyl-CoA substrates.


2004 ◽  
Vol 123 (5) ◽  
pp. 475-489 ◽  
Author(s):  
Lin Bao ◽  
Christina Kaldany ◽  
Ericka C. Holmstrand ◽  
Daniel H. Cox

There is controversy over whether Ca2+ binds to the BKCa channel's intracellular domain or its integral-membrane domain and over whether or not mutations that reduce the channel's Ca2+ sensitivity act at the point of Ca2+ coordination. One region in the intracellular domain that has been implicated in Ca2+ sensing is the “Ca2+ bowl”. This region contains many acidic residues, and large Ca2+-bowl mutations eliminate Ca2+ sensing through what appears to be one type of high-affinity Ca2+-binding site. Here, through site-directed mutagenesis we have mapped the residues in the Ca2+ bowl that are most important for Ca2+ sensing. We find acidic residues, D898 and D900, to be essential, and we find them essential as well for Ca2+ binding to a fusion protein that contains a portion of the BKCa channel's intracellular domain. Thus, much of our data supports the conclusion that Ca2+ binds to the BKCa channel's intracellular domain, and they define the Ca2+ bowl's essential Ca2+-sensing motif. Overall, however, we have found that the relationship between mutations that disrupt Ca2+ sensing and those that disrupt Ca2+ binding is not as strong as we had expected, a result that raises the possibility that, when examined by gel-overlay, the Ca2+ bowl may be in a nonnative conformation.


Author(s):  
Andersonn Silveira Prestes

The establishment and spread of exotic species is a contemporary major concern. Alien species may become invasive in their new habitat, leading to both/either environmental and/or economic impacts. I briefly reviewed the literature in the last decade about the relationship of exotic species and native communities. I identified that professionals usually approach the subject in two main points of view: (1) researchers tend to point out the impacts of alien species on entire communities, evaluating if the relationship is positive, negative or neutral; (2) they focus on the eco-evolutionary processes involved in the introductions, the dynamics of invasion, and individual study cases. When evaluating the response of introductions to entire communities, evidence seems to be ambiguous and may support positive, negative or neutral relationship, especially depending on the scale approached. The unique eco-evolutionary pathways of each introduction may be a great shortcoming in the searching for generalities. On the other hand, advances have been made in understanding the dynamics of invasion on different lineages through a more selective/individualized approach. I suggest that the dynamics of invasion might be studied through a perspective in which different eco-evolutionary processes, levels of organization (from gene to entire communities), the history of the organism(s) and time are taken into account. Individual cases might be compared in attempt to understand how the relationship exotic and native works and in the search for generalities.


2020 ◽  
Author(s):  
Zhong-Yin Zhou ◽  
Hang Liu ◽  
Yue-Dong Zhang ◽  
Yin-Qiao Wu ◽  
Min-Sheng Peng ◽  
...  

AbstractUnderstanding the mutational and evolutionary dynamics of SARS-CoV-2 is essential for treating COVID-19 and the development of a vaccine. Here, we analyzed publicly available 15,818 assembled SARS-CoV-2 genome sequences, along with 2,350 raw sequence datasets sampled worldwide. We investigated the distribution of inter-host single nucleotide polymorphisms (inter-host SNPs) and intra-host single nucleotide variations (iSNVs). Mutations have been observed at 35.6% (10,649/29,903) of the bases in the genome. The substitution rate in some protein coding regions is higher than the average in SARS-CoV-2 viruses, and the high substitution rate in some regions might be driven to escape immune recognition by diversifying selection. Both recurrent mutations and human-to-human transmission are mechanisms that generate fitness advantageous mutations. Furthermore, the frequency of three mutations (S protein, F400L; ORF3a protein, T164I; and ORF1a protein, Q6383H) has gradual increased over time on lineages, which provides new clues for the early detection of fitness advantageous mutations. Our study provides theoretical support for vaccine development and the optimization of treatment for COVID-19. We call researchers to submit raw sequence data to public databases.


2020 ◽  
Author(s):  
Han-Ha Chai ◽  
Young Ran Kim ◽  
Jun-Sang Ham ◽  
Tae-Hun Kim ◽  
Dajeong Lim

Abstract Background: The OppA receptor as a ATP-binding cassette (ABC) transporter plays key roles in protecting host organism and transport nutrients across the intestine by the oligopeptide transporter from symbiotic bacteria directs maturation of the host immune system. Among lactic acid bacteria, Bifidobacterium longum KACC91563, isolated from fecal samples of healthy Korean neonates, has the capability to alleviate food allergy effects. The extracellular OppA receptor from gram-positive Bifidobacterium longum KACC91563 translocate nutrients-peptides from the outside environment of intestinal tract to the inside of the symbiotic cell, as a peptide importer. Hence, it was attempting to explicate the relationship between the substrate’s specificity from the OppA importer and the probiotic effects of B. logum KACC91563 in the host intestine. The probiotic effects of B. logum KACC91563 were attributed to the enhancement of the epithelial barrier by several different strain sepcific ways to prevent the strong adhesion of pathogens. The specialized structure-function relationship from the OppA importer could provide the abstract of substrate specificity into unique immunological properties of that the host organism.Results: In the study, we characterized the extracellular OppA importer from B. longum KACC91563 of intestinal microbiome by various protein structure-based modelings in silico. Structural characterization by conserved 5 patches and 4 functional motifs from specific trace residues of the OppA importer. The hydrate surface of the binding site had been decipted by specific trace residues of the OppA that trace residues of Thr58, Lys185, Trp443, and Tyr447, which were characterized in highly exposed hydrophobic binding pocket by its aggregation prones. Therefore, the spatial aggregation propensity in the binding site of the extracellular OppA importer plays a vital role in the specific interaction determinant for peptide binding. In addition, alanine mutation energy values allowed for the virtual determination of the relationships between the energy effects of the peptide binding site mutation on the transporter structural stability, the peptide binding affinity, and the transporter-related peptide substrate selectivity from OppA importer. In particular, distinctive seven pharmacophoric features comprised of two H-bonding donor(P1), three H-bonding acceptor(P8), and two hydrophobic points (P5 and P8) matched the the OppA receptor-peptide ligand interactions within their binding pocket structure. There are distinct interactions to fix the positions of the N(P1) and C(P8) termini of the complex of OppA-peptide from B. longum KACC91563 such as side chain-specific interactions with the OppA, compared to that of the Lactococcus latis (L. lactics) OppA.Conclusions: The specialized structure-function relationship from the OppA import could provide the abstract of substrate specificity into unique immunological properties of the host organism by stucutre-based molecular modeling. In the current study, we attempted explication of the relationship between the substrate’s specificity from the OppA importer and the probiotic effects of B. longum KACC91563 in the host intestine based on the structure-function perspectives of the OppA importer. Moreover, functional characterization of solute-binding proteins (such as 15 cell wall proteins and 20 extracellular proteins) on the B. longum KACC91563 genome will lead to insight of key switch for substate’s metabolism into reprogramming immune responses in the host intestine.


2020 ◽  
Author(s):  
David A Swan ◽  
Morgane Rolland ◽  
Joshua Herbeck ◽  
Joshua T Schiffer ◽  
Daniel B Reeves

AbstractModern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic (wi-phy) models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The most parsimonious and accurate model required no positive selection, suggesting that the host adaptive immune system reduces viral load, but does not drive observed viral evolution. Rather, random genetic drift primarily dictates fitness changes. These results hold during early infection, and even during chronic infection when selection has been observed, viral fitness distributions are not largely different from in vitro distributions that emerge without adaptive immunity. These results highlight how phylogenetic inference must consider complex viral and immune-cell population dynamics to gain accurate mechanistic insights.One sentence summaryThrough the lens of a unified population and phylodynamic model, current data show the first wave of HIV mutations are not driven by selection by the adaptive immune system.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S476-S476
Author(s):  
Timothy N Crawford ◽  
Alice Thornton

Abstract Background Substance use and multimorbidity (≥2 chronic conditions) are highly prevalent among people living with HIV (PLWH). However, their impact on achieving viral suppression are not well understood. The purpose of this study was to examine the relationship between substance use and viral suppression and the potential moderating effect of multimorbidity. Methods A retrospective cohort study was conducted at an academic Ryan White Funded clinic in central Kentucky. Individuals were included if they were diagnosed with HIV, seeking care between 2010 and 2014, had at least one year of follow-up, and did not have a chronic condition at the time they entered care. The primary independent variable was substance use which included alcohol, nicotine use, and/or illicit drug use; the moderating variable was multimorbidity (0, 1, ≥2 chronic conditions); and outcome was viral suppression (≤50 copies/mL). A logistic regression model was developed to examine the interaction between substance use and multimorbidity on achieving viral load suppression. The model controlled for medication adherence, insurance status, age, and CD4+ cell counts. Results A total of 941 individuals were included in the study, with an average age of 43.9 ± 11.7 years. Approximately 67.0% reported substance use; 54% had ≥2 chronic conditions diagnosed. The three most prevalent conditions diagnosed were hypertension (34.6%), mental health (33.9%), and diabetes (21.5%) Approximately 61.0% of substance users had ≥2 conditions. Those with viral suppression were less likely to be substance users, but were more likely to have ≥2 conditions compared with their counterparts. There was a significant interaction between substance use and multimorbidity (P = 0.037). Stratified by multimorbidity, substance use was associated with unsuppressed viral loads; among those with ≥2 chronic conditions substance users had lower odds of achieving viral suppression compared with nonusers (OR=0.24; 95% CI=0.10–0.55). Conclusion Substance use may impede the opportunity for PLWH to achieve viral suppression, increasing their risk of transmission and progression of disease. More research is needed to understand the role substance use plays in impacting viral load, specifically among those with multiple chronic conditions. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document