immune cell population
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 62)

H-INDEX

18
(FIVE YEARS 5)

Author(s):  
Jianying Li ◽  
Chelsea Bolyard ◽  
Gang Xin ◽  
Zihai Li

Tumor-infiltrating myeloid cells are a prominent pro-tumorigenic immune cell population that limit host anti-tumor immunity and present a significant obstacle for many cancer immunotherapies. Targeting the mechanisms regulating myeloid cell function within the tumor microenvironment may overcome immunotherapy resistance in some cancers. Recent discoveries in the emerging field of immunometabolism reveal that the metabolic profiles of intratumoral myeloid cells are rewired to adapt to the nutrition-limited tumor microenvironment, and this shapes their pro-tumor phenotypes. Interestingly, metabolic modulation can shift these myeloid cells toward the immune-stimulating anti-tumor phenotype. In this review, we will highlight the roles of specific metabolic pathways in the activation and function of myeloid cells, and discuss the therapeutic value of metabolically reprogramming myeloid cells to augment and improve outcomes with cancer immunotherapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1901
Author(s):  
Eva Miko ◽  
Aliz Barakonyi ◽  
Matyas Meggyes ◽  
Laszlo Szereday

NKT cells represent a small but significant immune cell population as being a part of and bridging innate and adaptive immunity. Their ability to exert strong immune responses via cytotoxicity and cytokine secretion makes them significant immune effectors. Since pregnancy requires unconventional maternal immunity with a tolerogenic phenotype, investigation of the possible role of NKT cells in materno-fetal immune tolerance mechanisms is of particular importance. This review aims to summarize and organize the findings of previous studies in this field. Data and information about NKT cells from mice and humans will be presented, focusing on NKT cells characteristics during normal pregnancy in the periphery and at the materno-fetal interface and their possible involvement in female reproductive failure and pregnancy complications with an immunological background.


Stroke ◽  
2021 ◽  
Vol 52 (12) ◽  
Author(s):  
Yueman Zhang ◽  
Arthur Liesz ◽  
Peiying Li

Immune cell infiltration to the injured brain is a key component of the neuroinflammatory response after ischemic stroke. In contrast to the large amount of proinflammatory immune cells, regulatory T cells, are an important subgroup of T cells that are involved in maintaining immune homeostasis and suppress an overshooting immune reaction after stroke. Numerous previous reports have consistently demonstrated the beneficial role of this immunosuppressive immune cell population during the acute phase after experimental stroke by limiting inflammatory lesion progression. Two recent studies expanded now this concept and demonstrate that regulatory T cells-mediated effects also promote chronic recovery after stroke by promoting a proregenerative tissue environment. These recent findings suggest that boosting regulatory T cells could be beneficial beyond modulating the immediate neuroinflammatory response and improve chronic functional recovery.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei Zhang ◽  
Ling Li ◽  
Ti Zhang ◽  
Xiaomin Gao ◽  
Zeyu Wang ◽  
...  

Background. As a common urological disease with a high recurrence rate, nephrolithiasis caused by CaOx may elicit a strong immunologic response. We present a CyTOF-based atlas of the immune landscape in nephrolithiasis models to understand how the immune system contributes to, and is affected by, the underlying response caused by SIRT3 knockout and CaOx inducement. Materials and Methods. We performed a large-scale CyTOF analysis of immune cell abundance profiles in nephrolithiasis. The immunophenotyping data were collected from four different mouse models, including the SIRT3 wild-type or knockout, including and excluding CaOx inducement. Unsupervised analysis strategies, such as SPADE and viSNE, revealed the intrarenal resident immune components and the immune alterations caused by SIRT3 knockout and CaOx-induced renal injury. Results. An overview analysis of the immune landscape identified T cells and macrophages as the main immune cell population in nephrolithiasis models. Highly similar phenotypes were observed among CD4+ and CD8+ T cell subsets, including cells expressing Ki67, Ly6C, Siglec-F, and TCRβ. Macrophages expressed a characteristic panel of markers with varied expression levels including MHC II, SIRPα, CD11c, Siglec-F, F4/80, CD64, and CD11b, indicating more subtle differences in marker expression than T cells. The SIRT3KO/CaOx and SIRT3WT/CaOx groups exhibited global differences in the intrarenal immune landscape, whereas only small differences existed between the SIRT3KO/CaOx and SIRT3KO/Ctrl groups. Among the major immune lineages, the response of CD4+ T cells, NK cells, monocytes, and M1 to CaOx inducement was regulated by SIRT3 expression in contrast to the expression changes of B cells, DCs, and granulocytes caused by CaOx inducement. The panel of immune markers influenced by CaOx inducement significantly varied with and without SIRT3 knockout. Conclusion. In a CaOx-induced nephrolithiasis model, SIRT3 has a critical role in regulating the immune system, especially in reducing inflammatory injury. The characteristic panel of altered immune clusters and markers provides novel insights leading to improved prediction and management of nephrolithiasis.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A60-A60
Author(s):  
Andrew Quong ◽  
Mark Rees ◽  
Kirsteen Maclean ◽  
Mael Manesse ◽  
Jordan Nieto ◽  
...  

BackgroundPancreatic cancer remains a deadly disease due to difficulties hindering its early diagnosis, giving way to metastasis of the tumor and resulting in poor prognosis. While there are many neoplasms of the pancreas, pancreatic invasive ductal adenocarcinoma (PDAC) is the most common and treatment options are few, with poor overall survival. Aggressive surgeries such as the Whipple procedure coupled to systemic chemotherapy is one of the few treatment options. Recently, several publications have demonstrated improved outcomes with the inclusion of immunotherapy to cytotoxic drug combinations in some patients, however optimally selecting patients as candidates for immunotherapy-chemotherapy combinations remains a critical challenge. The complexities of the tumor microenvironment have been implicated in the failure of chemotherapy, radiation therapy, and immunotherapy. The tumor microenvironment of PDAC is especially rich with multiple interactions between pancreatic epithelial/cancer cells, stromal cells, immune cells and the extracellular matrix (ECM). PDACs are characterized by a complex ECM of desmoplastic reaction consisting of an extensive and dense fibrotic stroma that surrounds and infiltrates clusters of malignant epithelial cells, together with the loss of basement membrane integrity and an abnormal vasculature.MethodsIn the present study we demonstrate a tissue phenotyping workflow combining three complementary methods that can unravel novel insights in the complex tumor microenvironment. This novel translational workflow delivers tissue morphology information, spatial phenotyping of immune cell population on whole slides, and high dimensional imaging in selected regions of interest (ROI), by combining H&E, multiplex immunofluorescence (mIF), and Imaging Mass Cytometry (IMC™).ResultsThe use of the InSituPlex® UltiMapper® I/O PD-L1 kit enabled the streamlined combination and alignment of H&E and mIF data, leading to the strategic selection of relevant ROIs, while utility of IMC technology enabled downstream imaging of 35 protein markers associated with the ECM in the selected ROIs to provide a deeper understanding of the tumor microenvironment.ConclusionsThe incorporation of advanced multiplex imaging platforms such as mIF and IMC with routine H&E workflow in tumor biology can deliver some of the much-needed insight into tumor morphology, cellular composition, cellular functions, and cell-cell interactions and paves the way for potentially improved clinical prognosis and efficacy prediction in patients with cancer.


2021 ◽  
Vol 1 ◽  
Author(s):  
HoChan Cheon ◽  
Andrey Kan ◽  
Giulio Prevedello ◽  
Simone C. Oostindie ◽  
Simon J. Dovedi ◽  
...  

Lymphocytes are the central actors in adaptive immune responses. When challenged with antigen, a small number of B and T cells have a cognate receptor capable of recognising and responding to the insult. These cells proliferate, building an exponentially growing, differentiating clone army to fight off the threat, before ceasing to divide and dying over a period of weeks, leaving in their wake memory cells that are primed to rapidly respond to any repeated infection. Due to the non-linearity of lymphocyte population dynamics, mathematical models are needed to interrogate data from experimental studies. Due to lack of evidence to the contrary and appealing to arguments based on Occam’s Razor, in these models newly born progeny are typically assumed to behave independently of their predecessors. Recent experimental studies, however, challenge that assumption, making clear that there is substantial inheritance of timed fate changes from each cell by its offspring, calling for a revision to the existing mathematical modelling paradigms used for information extraction. By assessing long-term live-cell imaging of stimulated murine B and T cells in vitro, we distilled the key phenomena of these within-family inheritances and used them to develop a new mathematical model, Cyton2, that encapsulates them. We establish the model’s consistency with these newly observed fine-grained features. Two natural concerns for any model that includes familial correlations would be that it is overparameterised or computationally inefficient in data fitting, but neither is the case for Cyton2. We demonstrate Cyton2’s utility by challenging it with high-throughput flow cytometry data, which confirms the robustness of its parameter estimation as well as its ability to extract biological meaning from complex mixed stimulation experiments. Cyton2, therefore, offers an alternate mathematical model, one that is, more aligned to experimental observation, for drawing inferences on lymphocyte population dynamics.


2021 ◽  
Author(s):  
Byung-Yoon Kang ◽  
Sung Min Kim ◽  
Wonhee Hur ◽  
Pu Reun Roh ◽  
Ji Won Han ◽  
...  

Abstract Background: Anticancer strategies using nanocarrier systems via the enhanced permeability and retention (EPR) effect and tumor targeting have been explored in various cancers. In previous studies, the anticancer effect of polymerized phenylboronic acid-conjugated doxorubicin (pPBA-Dox) nanocomplexes was confirmed in various cancers, and their anticancer effect and tumor targeting ability was confirmed in hepatocellular carcinoma (HCC).This study aimed to determine the anticancer effect and changes in the liver immune cell population and function after pPBA-Dox nanocomplex infusion through transcatheter arterial chemoembolization (TACE), which is a locoregional therapy (LRT), in HCC. TACE was performed in a rat liver cancer model, and the anticancer effects, immune cell populations and functional changes were confirmed after 1 week. Magnetic resonance imaging (MRI) and flow cytometry (FACS) were performed to analyze the anticancer effect and immune cell population and function. Results: In HCC, the infusion of pPBA-Dox nanocomplexes through TACE had a stronger anticancer effect than conventional doxorubicin (Dox) and it promoted the infiltration and activation of CD4+ and CD8+ T cells in the liver. Conclusions: This study provides insight into novel targeted therapies using nanocomplexes for the treatment of HCC.


2021 ◽  
Vol 118 (37) ◽  
pp. e2102434118
Author(s):  
Sri Murugan Poongkavithai Vadevoo ◽  
Gowri Rangaswamy Gunassekaran ◽  
ChaeEun Lee ◽  
NaHye Lee ◽  
Jiyoun Lee ◽  
...  

Expression and function of odorant receptors (ORs), which account for more than 50% of G protein–coupled receptors, are being increasingly reported in nonolfactory sites. However, ORs that can be targeted by drugs to treat diseases remain poorly identified. Tumor-derived lactate plays a crucial role in multiple signaling pathways leading to generation of tumor-associated macrophages (TAMs). In this study, we hypothesized that the macrophage OR Olfr78 functions as a lactate sensor and shapes the macrophage–tumor axis. Using Olfr78+/+ and Olfr78−/− bone marrow–derived macrophages with or without exogenous Olfr78 expression, we demonstrated that Olfr78 sensed tumor-derived lactate, which was the main factor in tumor-conditioned media responsible for generation of protumoral M2-TAMs. Olfr78 functioned together with Gpr132 to mediate lactate-induced generation of protumoral M2-TAMs. In addition, syngeneic Olfr78-deficient mice exhibited reduced tumor progression and metastasis together with an increased anti- versus protumoral immune cell population. We propose that the Olfr78–lactate interaction is a therapeutic target to reduce and prevent tumor progression and metastasis.


2021 ◽  
Vol 118 (38) ◽  
pp. e2101071118
Author(s):  
William J. Melvin ◽  
Christopher O. Audu ◽  
Frank M. Davis ◽  
Sriganesh B. Sharma ◽  
Amrita Joshi ◽  
...  

COVID-19 induces a robust, extended inflammatory “cytokine storm” that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNβ directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNβ reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNβ/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.


Sign in / Sign up

Export Citation Format

Share Document