scholarly journals Cytometric Analysis of Diverse Glaucophyte Species Reveals Distinctive Signals Useful for Fluorescence-Based Detection and Sorting

2021 ◽  
Author(s):  
Rossella Calvaruso ◽  
Janice Lawrence ◽  
Adrian Reyes-Prieto

Glaucophytes, red algae and viridiplants (green algae and land plants) are formally united in the supergroup Archaeplastida. Although diverse molecular and genomic evidence suggest the common origin of the three Archaeplastida lineages, the lack of a robust glaucophyte knowledgebase has limited comprehensive evaluations of competing hypotheses. Glaucophytes are rare and apparently confined to freshwater habitats. However, the distribution and diversity of these algae have not been thoroughly explored owing to challenges with detecting and isolating novel specimens. Here we examined the cytometric signatures of representative species of the genera Cyanophora, Cyanoptyche, Glaucocystis and Gloeochaete for a distinctive signal that would aid identification. Most glaucophytes analyzed presented a relatively high red fluorescence signal due to the presence of the blue phycobiliproteins C-phycocyanin and allophycocyanin. Cell-size differences and the concurrent presence of the red phycobiliprotein phycoerythrin in other algal lineages, such as red algae and cryptophytes, allowed us to distinguish glaucophytes from other photosynthetic cells containing blue phycobiliproteins. We used fluorescence-assisted cell sorting (FACS) to isolate viable Cyanophora and Glaucocystis individuals from existing cultures. Our results indicate that the peculiar autofluorescence signal of glaucophytes will facilitate further identification and isolation on novel specimens of this scarce but important algal group.

2015 ◽  
Vol 84 (2) ◽  
pp. 149-165 ◽  
Author(s):  
Christopher Jackson ◽  
Susan Clayden ◽  
Adrian Reyes-Prieto

The Glaucophyta is one of the three major lineages of photosynthetic eukaryotes, together with viridiplants and red algae, united in the presumed monophyletic supergroup Archaeplastida. Glaucophytes constitute a key algal lineage to investigate both the origin of primary plastids and the evolution of algae and plants. Glaucophyte plastids possess exceptional characteristics retained from their cyanobacterial ancestor: phycobilisome antennas, a vestigial peptidoglycan wall, and carboxysome-like bodies. These latter two traits are unique among the Archaeplastida and have been suggested as evidence that the glaucophytes diverged earliest during the diversification of this supergroup. Our knowledge of glaucophytes is limited compared to viridiplants and red algae, and this has restricted our capacity to untangle the early evolution of the Archaeplastida. However, in recent years novel genomic and functional data are increasing our understanding of glaucophyte biology. Diverse comparative studies using information from the nuclear genome of <em>Cyanophora paradoxa</em> and recent transcriptomic data from other glaucophyte species provide support for the common origin of Archaeplastida. Molecular and ultrastructural studies have revealed previously unrecognized diversity in the genera <em>Cyanophora</em> and <em>Glaucocystis</em>. Overall, a series of recent findings are modifying our perspective of glaucophyte diversity and providing fresh approaches to investigate the basic biology of this rare algal group in detail.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Kiwon Ban ◽  
Brian Wile ◽  
Kyu-Won Cho ◽  
Sangsung Kim ◽  
Jason Singerd ◽  
...  

Background: Ventricular cardiomyocytes (CMs) are an ideal cell type for cardiac cell therapy since they are the main cells generating cardiac forces. However, isolating them from differentiating pluripotent stem cells (PSCs) has been challenging due to the lack of specific surface markers. Here we show that ventricular CMs can be purified from differentiating mouse embryonic stem cells (mESCs) using molecular beacons (MBs) targeting specific intracellular mRNAs. MBs are dual-labeled oligonucleotide hairpin probes that emit a fluorescence signal when hybridized to target mRNAs, allowing isolation of specific target cells by fluorescence activated cell sorting (FACS) with high specificity and sensitivity. Methods and Results: We generated three different MBs (IRX4-1, -2, -3) designed to target specific regions of mRNAs of iroquois homeobox protein 4 (Irx4), a specific transcription factor for ventricular CMs. Among three IRX4 MBs, IRX4-2 MB demonstrated the highest sensitivity and specificity, thus IRX4-2 MB was selected to purify mESC-derived ventricular CMs. Subsequently, IRX4-2 MBs were delivered into cardiomyogenically differentiating mESC cultures and cells showing strong signals from IRX4-2 MBs were FACS-sorted. Flow cytometry demonstrated that 92~97% of IRX4-2 MB-positive cells expressed a marker for ventricular CMs myosin light chain 2 ventricular isoform (Myl2) as well as cardiac troponin 2 (Tnnt2). Importantly, higher than 98% of IRX4-2 MB-positive cells displayed ventricular CM-like action potentials during electrophysiological analyses. These IRX4-2 MB-based purified ventricular CMs continuously maintained their CM characteristics verified by synchronous beating, Ca2+ transient, and expression of ventricular CM-specific proteins. Conclusions: We established a novel MB-based cell sorting system targeting a transcription factor that is specific for ventricular CM to generate homogeneous and functional ventricular CMs. This is the first report to show the feasibility of isolating pure ventricular CMs without modifying host genes, and this platform will be useful for therapeutic applications, disease modeling, and drug discovery.


ZooKeys ◽  
2021 ◽  
Vol 1065 ◽  
pp. 81-100
Author(s):  
Ko Tomikawa ◽  
Naoya Kimura

Freshwater habitats, especially cold springs, are environments in which the risk of extinction faced by organisms remains high due to human activities. To conserve endangered species, it is important to describe and name them. Here, a new, endangered freshwater anisogammarid amphipod species, Jesogammarus (Jesogammarus) acalceolussp. nov., found in a spring in Aomori Prefecture, Japan, is described which is potentially the sole remaining habitat of this species. Both morphological and molecular phylogenetic results strongly support the nesting of the new species within Jesogammarus. Jesogammarus (J.) acalceolussp. nov. is the first species of genus Jesogammarus that was found to lack a calceolus, a sensory organ located on male antenna 2. Thus, the diagnostic criteria for this genus required amendment. A reconstruction of ancestral calceoli, based on a molecular phylogenetic tree, revealed that the common ancestor of Jesogammarus possessed calceoli, which were secondarily lost in J. (J.) acalceolussp. nov. Our results indicate that this new species, which is key to clarifying the evolution of the calceolus, is of high conservation significance.


2021 ◽  
Author(s):  
Ko Tomikawa ◽  
Naoya Kimura

Abstract Freshwater habitats, especially cold springs, are environments in which the extinction risk faced by organisms remains high due to human activities. The extinction risks faced by many species go unrecognized prior to their extinction. To conserve endangered species, it is important to describe and name them. Here, we describe a new, endangered freshwater anisogammarid amphipod species, Jesogammarus (Jesogammarus) acalceolus sp. nov., found in a spring in Aomori Prefecture, Japan, which is potentially the sole remaining habitat of this species. Both morphological and molecular phylogenetic results strongly support the nesting of the new species within Jesogammarus. Jesogammarus (J.) acalceolus sp. nov. is the first species of genus Jesogammarus that was found to lack a calceolus, a sensory organ located on male antenna 2. Thus, the diagnostic criteria for this genus required amendment. A reconstruction of ancestral calceoli, based on a molecular phylogenetic tree, revealed that the common ancestor of Jesogammarus possessed calceoli, which were secondarily lost in J. (J.) acalceolus sp. nov. Our results indicate that this new species, which is key to clarifying the evolution of the calceolus, is of high conservation significance.


An account is provided of (i) the general morphology, (ii) the vascular, nervous and feeding systems, and (iii) aspects of the behaviour of a representative species of the pulmonate genus Chilina . Examination of this genus has aided in understanding the pattern of early evolution of freshwater pulmonates from their marine prosobranch ancestors and of their divergence from opisthobranchs. The gross morphology of Chilina is adapted to ploughing through the surface layers of soft substrata. Although C. fluctuosa was found on rocks, it was nevertheless capable of burrowing into sand, using a stereotyped digging cycle. Streamlining to facilitate burrowing was achieved by nuchal shortening and by a ‘detorsion’ of the mantle complex as in opisthobranchs. The nuchal shortening incurred loss of a major vascular pathway which, in monotocardian prosobranchs, drains the head-foot. ‘Detorsion’, however, provided a substitute which incorporates the anterior roof of the mantle cavity where, in Chilina , the precursor of the rich pulmonary plexus characteristic of later pulmonates may be discerned. The suprapallalial vascular system is described in detail. In contrast, it is apparent that increased reliance on burrowing in opisthobranchs brought about loss of the anterior region of the mantle cavity, and thus any potential for development of a plexus in that region. Enclosure of the mantle cavity, which clearly pre-adapted the mantle complex to function also as a ‘lung’, was necessary to reduce clogging of the mantle cavity by particulate material. Only water is held in the cavity of Chilina flutuosa , whose habitat is rivers, but both air and water may be held in the mantle complex of other species found in Chile. The nervous system is extremely similar to that of the primitive opisthrobranch Acteon , but the posterior section of the visceral loop is shorter owing to greater nuchal reduction. The loop is uncrossed, though the supraoesophageal ganglion lies only a little right of the suboesophageal ganglion. The musculature of the buccal mass is extremely similar to that of Lymnaea and Planorbarius , and is designed for moving and tensing a broad radular ribbon. It is argued that the buccal morphology characteristic of these snails evolved to manipulate quantities of particulate material during the early infaunal phase, and only later was used to great effect in both microphagous and macrophagous feeding. Collectively, the observations made on C. flluctuosa (and also on estuarine species found in Chile) support the contention that the Basommatophora invaded freshwater habitats via estuarine niches. Continuity during this progression was apparently provided by soft substrata, and probably by diatoms as a food source. Previous arguments purporting a terrestrial or semi-terrestrial origin for the limnic basommatophorans are refuted.


2012 ◽  
Vol 25 (6) ◽  
pp. 432 ◽  
Author(s):  
Anthony Mitchell ◽  
Rong Li ◽  
Joseph W. Brown ◽  
Ines Schönberger ◽  
Jun Wen

Molecular genetic analyses were used to reconstruct phylogenetic relationships and estimate divergence times for Raukaua species and their close relatives. A monophyletic group identified as the ‘greater Raukaua clade’ was circumscribed, with eight representative species; its basal divergence was estimated at c. 70 Mya, possibly after Zealandia had separated from Gondwana. Raukaua is paraphyletic because of the placement of Motherwellia, Cephalaralia, Cheirodendron and Schefflera s.s. The phylogeny supports a more narrowly circumscribed Raukaua that includes the New Zealand but not the South American or Tasmanian representatives. Ancestors of the monophyletic South American and Tasmanian Raukaua and the mainland Australian Motherwellia and Cephalaralia diverged at c. 66 Mya and their current disjunction may be vicariant, with overland dispersal between Australia and South America, possibly via Antarctica. Vicariance is also a likely mechanism for divergence at c. 57 Mya of the monophyletic Motherwellia, Cephalaralia and Tasmanian Raukaua. The common ancestor of New Zealand Raukaua¸ Cheirodendron and Schefflera s.s. is inferred to have existed c. 62 Mya in New Zealand, before the marine incursions during the Oligocene, implying that New Zealand Raukaua and Schefflera s.s. survived the inundation period or speciated outside New Zealand and subsequently colonised. Ancestors of Cheirodendron split from New Zealand Raukaua c. 43 Mya and dispersed over vast expanses of the south-western Pacific to Hawaii.


2019 ◽  
Vol 99 (06) ◽  
pp. 1363-1377 ◽  
Author(s):  
Uliana A. Nekliudova ◽  
Ksenia V. Shunkina ◽  
Alexey V. Grishankov ◽  
Marina A. Varfolomeeva ◽  
Andrey I. Granovitch ◽  
...  

AbstractQuantifying interconnected performances of the modules in a colonial organism (feeding, sexual reproduction, rejuvenation, dormancy) into an integral picture enables studying functional dynamics and resource allocation at different levels – from module to population. Testing this approach on the common boreal-Arctic bryozoan Cribrilina annulata in the White Sea, we describe its life history, comparing colonies on two algal substrates with contrasting size and lifespan. Colonies living on kelps were much larger and had a higher proportion of dormant zooids, whereas the percentage of reproducing, feeding and rejuvenating zooids was higher in colonies on red algae (with the colonies also exhibiting longer reproductive period). Colony lifespan was dependent both on substrate type and on time of colony establishment, lasting from 4–5 to up to 17 months on kelps and 14–18 months on red algae. During the reproductive season (May–September) the C. annulata population consisted of colonies of three cohorts on both substrata: overwintered and two summer generations that behaved differently. Whereas overwintered and summer colonies established in June–early August produced larvae, most of the colonies established after mid-summer were preparing for hibernation and postponed reproduction until next spring. Moreover, young reproducing colonies formed brooding hermaphrodite zooids of ordinary size, whereas overwintered colonies budded smaller-sized basal and frontal (dwarf) hermaphrodites. Finally, overall zooidal performance in co-existing colonies of the overwintered and young generations was different on kelps, but similar on red algae. Altogether our findings indicate that the life histories of colonial epibionts are much more complex and evolutionarily flexible than generally acknowledged.


2019 ◽  
Vol 8 (5) ◽  
pp. 163-169
Author(s):  
Yin Yin Htay

The species composition and distribution of some phytoplankton, the primary producer in the food chain of fish and shrimp, was studied from water samples that collected at surface layer of 20 stations in the Myeik Archipelago, Southern Myanmar from 2010 to 2018. A total of 144 species comprised of 123 species of diatoms and 21 species of dinoflagellate were recorded in the Myeik Archipelago. Among them, the most number 93 species of phytoplankton was recorded in Done Pale Aw Station however the lowest 26 species found in Le' Al' Thal Tan Station. The common representative species were ten diatoms species such as Chaetoceros curvisetus, Ditylum sol, Lauderia annulata, Nitzschia longissima, Odotella sinensis, Pleurosigma normanii, Pseudo Nitzschia seriata, Rhizosolenia setigera, Thalassionema nitzschioides and T. frauenfeldii and then one of dinoflagellate, Ceratium furca. Moreover, the percentage of diatom (87%) was higher than the dinoflagellate (13%) during the study period. The temperature 25-30°C and salinity 4-34‰ was found in the Myeik Archipelago during the study period.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kiwon Ban ◽  
Brian Wile ◽  
Sangsung Kim ◽  
Jaemin Byun ◽  
Talib Saafir ◽  
...  

Background: While various methods for generating cardiomyocytes (CMs) from pluripotent stem cells (PSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been reported, all available methods are only allowed to produce heterogeneous population of CM mixed with non-CM cells. Therefore, strategies to enrich pure CMs for scientific and clinical applications have been highly required. Hence, we developed a novel system in which CMs can be purified by cardiac specific molecular beacons (MBs). MBs are dual-labeled antisense nano-scale probes that emit a fluorescence signal when hybridized to target mRNAs. We hypothesized that MBs targeted to CM specific mRNAs can identify CMs and allow isolation of purified CMs by fluorescence-activated cell sorting (FACS). Methods and results: Five MBs targeting distinct sites on either cardiac troponin T (cTNT) or α/β myosin heavy chain (α/βMHC) were designed and characterized in various cell types. To find the optimal MB that can selectively identifying CMs, each MB was delivered into HL-1 CMs, an immortalized mouse CM cell line, smooth muscle cells, endothelial cells, mouse ESCs and fibroblasts and its specificity was determined by flow cytometry. As a result, two MBs identified MB+ cells up to 98% from HL-1 CMs but lower than 10% of the non-CM cells suggesting these MBs are CM specific. Subsequently, the selected MBs were delivered into both mouse and human PSCs derived CMs and 41 to 49% of the cells were identified as an MB+ population. Interestingly, the rate of MB+ cells was similar to CM quantification determined by cTNT intracellular flow cytometry. Finally, we determined whether cell sorting with cardiac-specific MBs can enrich CMs from the heterogeneous mouse and human PSC cultures and found that ∼97% of MB-based sorted CMs expressed cTNT. These enriched cells were further cultured and their CM identity was verified by immunocytochemistry and qRT-PCR analysis. Ca2+ transient analysis further confirmed that these purified CMs displayed functional CM characteristics Conclusion: Using cardiac specific MBs, we were able to obtain highly purified CMs. These purified CMs and the system can be highly useful for clinical applications as well as drug discovery.


Sign in / Sign up

Export Citation Format

Share Document