scholarly journals Cortical adaptation to sound reverberation

2021 ◽  
Author(s):  
Aleksandar Z Ivanov ◽  
Andrew J King ◽  
Ben Willmore ◽  
Kerry M M Walker ◽  
Nicol S Harper

In almost every natural environment, sounds are reflected by nearby objects, producing many delayed and distorted copies of the original sound, known as reverberation. Our brains usually cope well with reverberation, allowing us to recognize sound sources regardless of their environments. In contrast, reverberation can cause severe difficulties for speech recognition algorithms and hearing-impaired people. The present study examines how the auditory system copes with reverberation. We trained a linear model to recover a rich set of natural, anechoic sounds from their simulated reverberant counterparts. The model neurons achieved this by extending the inhibitory component of their receptive filters for more reverberant spaces, and did so in a frequency-dependent manner. These predicted effects were observed in the responses of auditory cortical neurons of ferrets in the same simulated reverberant environments. Together, these results suggest that auditory cortical neurons adapt to reverberation by adjusting their filtering properties in a manner consistent with dereverberation.

2021 ◽  
Vol 16 ◽  
pp. 263310552110202
Author(s):  
Sean X Naughton ◽  
Wayne D Beck ◽  
Zhe Wei ◽  
Guangyu Wu ◽  
Peter W Baas ◽  
...  

Among the various chemicals that are commonly used as pesticides, organophosphates (OPs), and to a lesser extent, carbamates, are most frequently associated with adverse long-term neurological consequences. OPs and the carbamate, pyridostigmine, used as a prophylactic drug against potential nerve agent attacks, have also been implicated in Gulf War Illness (GWI), which is often characterized by chronic neurological symptoms. While most OP- and carbamate-based pesticides, and pyridostigmine are relatively potent acetylcholinesterase inhibitors (AChEIs), this toxicological mechanism is inadequate to explain their long-term health effects, especially when no signs of acute cholinergic toxicity are exhibited. Our previous work suggests that a potential mechanism of the long-term neurological deficits associated with OPs is impairment of axonal transport (AXT); however, we had not previously evaluated carbamates for this effect. Here we thus evaluated the carbamate, physostigmine (PHY), a highly potent AChEI, on AXT using an in vitro neuronal live imaging assay that we have previously found to be very sensitive to OP-related deficits in AXT. We first evaluated the OP, diisopropylfluorophosphate (DFP) (concentration range 0.001-10.0 µM) as a reference compound that we found previously to impair AXT and subsequently evaluated PHY (concentration range 0.01-100 nM). As expected, DFP impaired AXT in a concentration-dependent manner, replicating our previously published results. In contrast, none of the concentrations of PHY (including concentrations well above the threshold for impairing AChE) impaired AXT. These data suggest that the long-term neurological deficits associated with some carbamates are not likely due to acute impairments of AXT.


2011 ◽  
Vol 36 (4) ◽  
pp. 683-694 ◽  
Author(s):  
Marek Niewiarowicz ◽  
Tomasz Kaczmarek

Abstract This article presents results of investigations of the angle of directional hearing acuity (ADHA) as a measure of the spatial hearing ability with a special emphasis on people with hearing impairments. A modified method proposed by Zakrzewski has been used - ADHA values have been determined for 8 azimuths in the horizontal plane at the height of the listeners' head. The two-alternative-forced-choice method (2AFC), based on a new system of listeners' responses (left - right instead of no difference - difference in location of sound sources) was the procedure used in the experiment. Investigations were carried out for two groups of subjects: normal hearing people (9 persons) and hearing impaired people (sensorineural hearing loss and tinnitus - 9 persons). In the experiment different acoustic signals were used: sinusoidal signals (pure tones), 1/3 octave noise, amplitude modulated 1/3 octave noise, CCITT speech and traffic noises and signals corresponding to personal character of tinnitus for individual subjects. The results obtained in the investigations showed, in general, a better localization of the sound source for noise type signals than those for tonal signals. Inessential differences exist in ADHA values for particular signals between the two groups of subjects. On the other hand, significant differences for tinnitus signals and traffic noise signals were stated. A new system of listeners' responses was used and appeared efficient (less dispersion of results compared to the standard system).


1994 ◽  
Vol 72 (5) ◽  
pp. 2438-2450 ◽  
Author(s):  
R. W. Rhoades ◽  
C. A. Bennett-Clarke ◽  
M. Y. Shi ◽  
R. D. Mooney

1. Recent immunocytochemical and receptor binding data have demonstrated a transient somatotopic patterning of serotonin (5-HT)-immunoreactive fibers in the primary somatosensory cortex of developing rats and a transient expression of 5-HT1B receptors on thalamocortical axons from the ventral posteromedial thalamic nucleus (VPM). 2. These results suggest that 5-HT should strongly modulate thalamocortical synaptic transmission for a limited time during postnatal development. This hypothesis was tested in intracellular recording experiments carried out in thalamocortical slice preparations that included VPM, the thalamic radiations, and the primary somatosensory cortex. Effects of 5-HT and analogues were monitored on membrane potentials and input resistances of cortical neurons and on the amplitude of the synaptic potentials evoked in them by stimulation of VPM. 3. Results obtained from cortical neurons in slices taken from rats during the first 2 wk of life indicated that 5-HT strongly inhibited the VPM-evoked excitatory postsynaptic potential (EPSP) recorded from cortical neurons in a dose-dependent manner. In contrast, 5-HT had no significant effects on membrane potential, input resistance, or depolarizations induced by direct application of glutamic acid to cortical cells. 4. The effects of 5-HT were mimicked by the 5-HT1B receptor agonists 1-[3-(trifluoromethyl)phenyl]-piperazine (TFMPP) and 7-trifluoromethyl-4(4-methyl-1-piperazinyl)-pyrrolo[1,2-a]-quinoxaline maleate and antagonized by the 5-HT1B receptor antagonist (-)-pindolol. The 5-HT1A agonist [(+/-)8-hydroxydipropylaminotetralin HBr] (8-OH-DPAT) had less effect on the VPM-elicited EPSP, and the effects of 5-HT upon this response were generally not antagonized by either 1-(2-methoxyphenyl)-4-[4-(2- phthalimmido)butyl]piperazine HBr (a 5-HT1A antagonist) or ketanserine (a 5-HT2 antagonist) or spiperone (a 5-HT1A and 2 antagonist). 5. The ability of 5-HT to inhibit the VPM-evoked EPSP in cortical neurons was significantly reduced in slices from animals > 2 wk of age. The effectiveness of TFMPP in such animals was even more attenuated than that of 5-HT, and the effectiveness of 8-OH-DPAT was unchanged with age. These results are consistent with the disappearance of 5-HT1B receptors from thalamocortical axons after the second postnatal week and the maintenance of 5-HT1A receptors on some neurons. 6. All of the results obtained in this study are consistent with the conclusion that 5-HT has a profound, but developmentally transient, presynaptic inhibitory effect upon thalamocortical transmission in the rat's somatosensory cortex.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 603
Author(s):  
Hyunseong Kim ◽  
Jin Young Hong ◽  
Junseon Lee ◽  
Wan-Jin Jeon ◽  
In-Hyuk Ha

Apamin is a minor component of bee venom and is a polypeptide with 18 amino acid residues. Although apamin is considered a neurotoxic compound that blocks the potassium channel, its neuroprotective effects on neurons have been recently reported. However, there is little information about the underlying mechanism and very little is known regarding the toxicological characterization of other compounds in bee venom. Here, cultured mature cortical neurons were treated with bee venom components, including apamin, phospholipase A2, and the main component, melittin. Melittin and phospholipase A2 from bee venom caused a neurotoxic effect in dose-dependent manner, but apamin did not induce neurotoxicity in mature cortical neurons in doses of up to 10 µg/mL. Next, 1 and 10 µg/mL of apamin were applied to cultivate mature cortical neurons. Apamin accelerated neurite outgrowth and axon regeneration after laceration injury. Furthermore, apamin induced the upregulation of brain-derived neurotrophic factor and neurotrophin nerve growth factor, as well as regeneration-associated gene expression in mature cortical neurons. Due to its neurotherapeutic effects, apamin may be a promising candidate for the treatment of a wide range of neurological diseases.


2015 ◽  
Author(s):  
Romain D. Cazé ◽  
Sarah Jarvis ◽  
Amanda J. Foust ◽  
Simon R. Schultz

AbstractHearing, vision, touch-underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Non-linear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of non-preferred stimuli. Using a multi-subunit non-linear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of synapses or dendrites loss than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites, that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially non-selective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.


2020 ◽  
Author(s):  
Maximilian Lenz ◽  
Pia Kruse ◽  
Amelie Eichler ◽  
Julia Muellerleile ◽  
Jakob Straehle ◽  
...  

ABSTRACTA defining feature of the brain is its ability to adapt structural and functional properties of synaptic contacts in an experience-dependent manner. In the human cortex direct experimental evidence for synaptic plasticity is currently missing. Here, we probed plasticity in human cortical slices using the vitamin A derivative all-trans retinoic acid, which has been suggested as medication for the treatment of neuropsychiatric disorders, e.g., Alzheimer’s disease. Our experiments demonstrate coordinated structural and functional changes of excitatory synapses of superficial (layer 2/3) pyramidal neurons in the presence of all-trans retinoic acid. This synaptic adaptation is accompanied by ultrastructural remodeling of the calcium-storing spine apparatus organelle and requires mRNA-translation. We conclude that all-trans retinoic acid is a potent mediator of synaptic plasticity in the adult human cortex.


Author(s):  
Ying Tian ◽  
Liang Wang ◽  
Zhiqiang Qiu ◽  
Yulun Xu ◽  
Rongrong Hua

We reported that a high level of autophagy was initiated by oxygen-glucose deprivation (OGD) and was maintained in neurons even after oxygen-glucose deprivation followed by reoxygenation (OGD/R), accompanied by neuronal apoptosis. This study focused on autophagy-induced apoptosis and its signaling network, especially the role of endoplasmic reticulum stress (ERS). Analysis of primary cultured cortical neurons from mice showed that the autophagy-induced apoptosis depended on Caspase-8 and -9 but not Caspase-12. This finding did not mean that the endoplasmic reticulum did not participate in this process. Increases in the levels of endoplasmic reticulum (ER) biomarkers and Binding immunoglobulin protein (BiP) were induced by autophagy in OGD/R-treated neurons. In addition, as an apoptotic transcription factor induced by ER stress, C/EBP homologous protein (CHOP) expression was significantly increased in neurons after OGD/R. This result suggested that the autophagy-Bip-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons. It revealed that ER induced apoptosis in neurons suffering from OGD/R injury in an ER stress-CHOP-dependent manner rather than a caspase-12-dependent manner. However, more research on signaling or cross-linking networks and intermediate links are needed. The realization of caspase-12-independent BiP-CHOP neuronal apoptosis pathway has expanded our understanding of the neuronal apoptosis network, which may eventually provide endogenous interventional strategies for OGD/R injury after stroke.


2000 ◽  
Vol 83 (5) ◽  
pp. 2610-2615 ◽  
Author(s):  
Qingbo Tang ◽  
Ronald M. Lynch ◽  
Frank Porreca ◽  
Josephine Lai

The opioid peptide dynorphin A is known to elicit a number of pathological effects that may result from neuronal excitotoxicity. An up-regulation of this peptide has also been causally related to the dysesthesia associated with inflammation and nerve injury. These effects of dynorphin A are not mediated through opioid receptor activation but can be effectively blocked by pretreatment with N-methyl-d-aspartate (NMDA) receptor antagonists, thus implicating the excitatory amino acid system as a mediator of the actions of dynorphin A and/or its fragments. A direct interaction between dynorphin A and the NMDA receptors has been well established; however the physiological relevance of this interaction remains equivocal. This study examined whether dynorphin A elicits a neuronal excitatory effect that may underlie its activation of the NMDA receptors. Calcium imaging of individual cultured cortical neurons showed that the nonopioid peptide dynorphin A(2-17) induced a time- and dose-dependent increase in intracellular calcium. This excitatory effect of dynorphin A(2-17) was insensitive to (+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]-cyclohepten-5,10-imine (MK-801) pretreatment in NMDA-responsive cells. Thus dynorphin A stimulates neuronal cells via a nonopioid, non-NMDA mechanism. This excitatory action of dynorphin A could modulate NMDA receptor activity in vivo by enhancing excitatory neurotransmitter release or by potentiating NMDA receptor function in a calcium-dependent manner. Further characterization of this novel site of action of dynorphin A may provide new insight into the underlying mechanisms of dynorphin excitotoxicity and its pathological role in neuropathy.


Sign in / Sign up

Export Citation Format

Share Document