scholarly journals A Notch-dependent transcriptional mechanism controls expression of temporal patterning factors in Drosophila medulla

2021 ◽  
Author(s):  
Alokananda Ray ◽  
Xin Li

Temporal patterning is an important mechanism for generating a great diversity of neuron subtypes from a seemingly homogenous progenitor pool in both vertebrates and invertebrates. Drosophila neuroblasts have been shown to be temporally patterned by sequentially expressed Temporal Transcription Factors (TTFs). These TTFs are proposed to form a transcriptional cascade based on mutant phenotypes, although direct transcriptional regulation between TTFs has not been verified in most cases. Furthermore, it is not known how the temporal transitions are coupled with generation of the appropriate number of neurons at each stage. We use neuroblasts of the Drosophila optic lobe medulla to address these questions, and show that the expression of TTFs Sloppy-paired 1/ 2 (Slp1/2) is regulated at transcriptional level directly by two other TTFs and the cell-cycle dependent Notch signaling through two cis-regulatory elements. We also show that supplying transcriptional active Notch can rescue the delayed transition into the Slp stage in cell cycle arrested neuroblasts. Our findings reveal how an interplay between temporal patterning, the neuroblast cell cycle and key signaling pathways such as Notch achieves precise regulation of patterning transcription factor gene expression that is characteristic of these programs.

Gene ◽  
1999 ◽  
Vol 236 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Jeffrey J Schrick ◽  
Michael J Hughes ◽  
Kathleen P Anderson ◽  
Michelle L Croyle ◽  
Jerry B Lingrel

1994 ◽  
Vol 14 (7) ◽  
pp. 4788-4801 ◽  
Author(s):  
D Stuart ◽  
C Wittenberg

The budding yeast Saccharomyces cerevisiae CLN1, CLN2, and CLN3 genes encode functionally redundant G1 cyclins required for cell cycle initiation. CLN1 and CLN2 mRNAs accumulate periodically throughout the cell cycle, peaking in late G1. We show that cell cycle-dependent fluctuation in CLN2 mRNA is regulated at the level of transcriptional initiation. Mutational analysis of the CLN2 promoter revealed that the major cell cycle-dependent upstream activating sequence (UAS) resides within a 100-bp fragment. This UAS contains three putative SWI4-dependent cell cycle boxes (SCBs) and two putative MluI cell cycle boxes (MCBs). Mutational inactivation of these elements substantially decreased CLN2 promoter activity but failed to eliminate periodic transcription. Similarly, inactivation of SWI4 decreased CLN2 transcription without affecting its periodicity. We have identified a second UAS in the CLN2 upstream region that can promote cell cycle-dependent transcription with kinetics similar to that of the intact CLN2 promoter. Unlike the major CLN2 UAS, this newly identified UAS promotes transcription in cells arrested in G1 by inactivation of cdc28. This novel UAS is both necessary and sufficient for regulated transcription driven by a CLN2 promoter lacking functional SCBs and MCBs. Although this UAS itself contains no SCBs or MCBs, its activity is dependent upon SWI4 function. The characteristics of this novel UAS suggest that it might have a role in initiating CLN2 expression early in G1 to activate the positive feedback loop that drives maximal Cln accumulation.


1994 ◽  
Vol 14 (7) ◽  
pp. 4788-4801
Author(s):  
D Stuart ◽  
C Wittenberg

The budding yeast Saccharomyces cerevisiae CLN1, CLN2, and CLN3 genes encode functionally redundant G1 cyclins required for cell cycle initiation. CLN1 and CLN2 mRNAs accumulate periodically throughout the cell cycle, peaking in late G1. We show that cell cycle-dependent fluctuation in CLN2 mRNA is regulated at the level of transcriptional initiation. Mutational analysis of the CLN2 promoter revealed that the major cell cycle-dependent upstream activating sequence (UAS) resides within a 100-bp fragment. This UAS contains three putative SWI4-dependent cell cycle boxes (SCBs) and two putative MluI cell cycle boxes (MCBs). Mutational inactivation of these elements substantially decreased CLN2 promoter activity but failed to eliminate periodic transcription. Similarly, inactivation of SWI4 decreased CLN2 transcription without affecting its periodicity. We have identified a second UAS in the CLN2 upstream region that can promote cell cycle-dependent transcription with kinetics similar to that of the intact CLN2 promoter. Unlike the major CLN2 UAS, this newly identified UAS promotes transcription in cells arrested in G1 by inactivation of cdc28. This novel UAS is both necessary and sufficient for regulated transcription driven by a CLN2 promoter lacking functional SCBs and MCBs. Although this UAS itself contains no SCBs or MCBs, its activity is dependent upon SWI4 function. The characteristics of this novel UAS suggest that it might have a role in initiating CLN2 expression early in G1 to activate the positive feedback loop that drives maximal Cln accumulation.


Cell Research ◽  
2009 ◽  
Vol 19 (11) ◽  
pp. 1291-1304 ◽  
Author(s):  
Rui-Ling Mu ◽  
Yang-Rong Cao ◽  
Yun-Feng Liu ◽  
Gang Lei ◽  
Hong-Feng Zou ◽  
...  

2019 ◽  
Author(s):  
Huaning Zhang ◽  
Guoliang Li ◽  
Yuanyuan Zhang ◽  
Yujie Zhang ◽  
Hongbo Shao ◽  
...  

Background. The yield of maize crop is influenced seriously by heat waves. Plant heat shock transcription factors (Hsfs) play a key regulatory role in heat shock signal transduction pathway. Method. In this study, a new heat shock transcription factor gene, ZmHsf01 (accession number: MK888854) , was cloned from maize young leaves using homologous cloning method. The transcriptional level of ZmHsf01 were detected by qRT-PCR in different tissues or under heat shock, abscisic acid (ABA) and hydrogen peroxide (H2O2) treatment. The transgenic yeast and Arabidopsis were used to study the gene function of ZmHsf01. Result. The coding sequence (CDS) of ZmHsf01 was 1176 bp and encoded a protein that consisted of 391 amino acids. The homologous analysis result showed that ZmHsf01 and SbHsfA2d had the highest protein sequence identity. Subcellular localization experiments demonstrated that ZmHsf01 is localized to the nucleus. ZmHsf01 was expressed in many maize tissues and was up-regulated by heat stress. ZmHsf01 was up-regulated in roots and down-regulated in leaves by ABA and H2O2treatments. In yeast, ZmHsf01-overexpressing cells showed increased thermotolerance. In Arabidopsis seedlings, ZmHsf01 complemented the thermotolerance defects of athsfa2 mutant and ZmHsf01-overexpressing lines presented enhanced basal and acquired thermotolerance. Compared to wild type (WT) seedlings, ZmHsf01-overexpressing lines showed increased chlorophyll content after heat stress. The expression level of heat shock protein genes was up-regulated higher in ZmHsf01-overexpressing Arabidopsis seedlings than that in WT. These results suggested that ZmHsf01 plays a vital role in plant response to heat stress.


Sign in / Sign up

Export Citation Format

Share Document