scholarly journals Clinically relevant SMAC mimetics do not enhance human T cell proliferation or cytokine production

2021 ◽  
Author(s):  
Ashley Burton ◽  
Brittany Ligman ◽  
Claire Kearney ◽  
Susan E Murray

Secondary mitochondria-derived activator of caspases (SMAC) mimetics are being tested in dozens of clinical trials to treat cancer. These small molecules mimic endogenous molecules that promote apoptosis by antagonizing inhibitors of apoptosis (IAPs), which are commonly overexpressed in cancer cells. In T cells, IAPs function to restrain non-canonical NF-kB signaling. Thus, it has been suggested that in addition to their direct anti-cancer mechanism of action, SMAC mimetics may activate T cells, thereby promoting anti-tumor immunity. Here, we tested the effect of three clinically relevant SMAC mimetics on the proliferation and activation of primary human T cells. As previously reported, SMAC mimetics killed tumor cells and activated non-canonical NF-kB in T cells at clinically relevant doses. Surprisingly, none of the SMAC mimetics augmented T cell proliferation or effector function. These results question the assumption that SMAC mimetics are likely to boost anti-tumor immunity in cancer patients.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3014-3014 ◽  
Author(s):  
Arghya Ray ◽  
Deepika Sharma DAS ◽  
Yan Song ◽  
Dharminder Chauhan ◽  
Kenneth C Anderson

Abstract Introduction Dysfunctional T cells and Natural Killer (NK) cells in MM, together with functionally defective plasmacytoid dendritic cells (pDCs), contribute to the immune suppression in MM (Chauhan et al, Cancer Cell 2009, 16:309-323; Ray et al, Leukemia 2014, 28: 1716-1724). The mechanism and the role of immunoregulatory molecules mediating pDC-T cell and pDC-NK cell interactions in MM are now defined. Programmed cell death protein 1 (PD-1) is highly expressed on MM patient T cells and NK cells; and both pDCs and MM cells express PD-1 ligand PD-L1 (B7-H1). PD-L1 interaction with PD-1 results in bidirectional inhibitory responses in T cells. Our study showed that pDCs confer T cell and NK cell immune suppression in the MM BM milieu by engaging immune checkpoints via PD-L1/PD-1 signaling axis (Ray et al, Leukemia 2015, 29:1441-1444). Importantly, blockade of PD-L1-PD-1 using anti-PD-L1 Ab generates MM-specific CD8+ CTL activity, as well as enhances NK-cell-mediated MM cell cytolytic activity. Anti-MM therapies may modulate MM-host immune responses, which raises the possibility that efficacy of anti-PD-Ll Ab can be improved by combining these therapies with immune-stimulating agents. Here we examined the impact of combining immune checkpoint blockade with lenalidomide, pomalidomide, bortezomib, HDAC inhibitor ACY-1215, or Toll-Like Receptor 9 agonists on anti-tumor immunity and cytotoxicity in MM. Methods For combination studies, we utilized low concentrations of various drugs (pomalidomide, lenalidomide, ACY-1215, or bortezomib) that do not significantly decrease viability of MM cells. As in our prior studies, anti-PD-L1 Ab and TLR9 agonist are not cytotoxic against MM cells. T cell proliferation assay: MM patient pDCs were co-cultured with autologous T cells (pDC:T ratio; 1:10) in the presence of anti-PD-L1 Ab (5 μg/ml) alone, drug alone, or anti-PD-L1 Ab plus drug for 5-6 days, and proliferation was quantified with CellTrace Violet Cell proliferation Kit using FACS. CTL activity assays: MM patient CD8+ T cells were cultured with autologous pDCs (1:10 pDC/T ratio) with anti-PD-L1 Ab, drug alone, or anti-PD-L1 plus drug for 5 days; cells were washed to remove drug, and GFP+MM.1S cells (20:1 E/T ratio) were added for another 2-3 days, followed by quantification of viable GFP+MM.1S cells using FACS. NK-cell mediated cytotoxic activity was assessed using flow-based CFSE-stained K562 lysis assays, as well as degranulation assay quantifying cell surface CD107a. All statistical parameters were calculated using GraphPad Prism 6. Anti-PD-L1 Ab was purchased from eBiosciences, USA; and ACY-1215, bortezomib, lenalidomide, and pomalidomide were purchased from Selleck chemicals, USA. Results Combination of anti-PD-L1 Ab (5 μg/ml) with lenalidomide (50-100 nM) or pomalidomide (100 nM) triggered a more robust MM-specific CD8+ CTL activity than anti-PD-L1 Ab alone (1.5-2 and 2-3 fold increase in CTL activity for lenalidomide and pomalidomide combinations, repectively). Anti-PD-L1 Ab combination with lenalidomide or pomalidomide also significantly increased NK-cell-mediated MM cell cytotoxicity (p < 0.05). We next determined whether anti-PD-L1 Ab can be combined with histone deacetylase inhibitors ACY-1215 (250 nM) or Panobinostat (2 nM). Combination of anti-PD-L1 Ab with ACY-1215 or panobinostat enhanced MM-specific CD8+ CTL activity versus anti-PD-L1 Ab alone (1.5 and 2 fold increase in CTL activity for panobinostat and ACY-1215 combinations, respectively). Assessment of surface CD107a as a marker of NK cell functional activity showed that anti-PD-L1 Ab plus ACY-1215 markedly increased CD107a expression (>10 fold) versus anti-PD-L1 Ab alone. Our prior studies showed that TLR9 agonists can restore pDCs ability to trigger T cell proliferation. We found that a combination of anti-PD-L1 Ab and TLR9 agonists (1 μM) enhances MM-specific pDC-induced CTL activities (2-3 fold increase in CTL activity in combination regimen versus anti-PD-L1 Ab alone). Finally, a combination of bortezomib (2 nM) with anti-PD-L1 Ab increased the MM-specific CTL activity (1.5-2 fold increase). Conclusions Our study provides the basis for combining novel immunotherapies targeting PD-1/PD-L1 pathway with current anti-MM agents or pDC-activating TLR agonists, to both restore immune function and enhance cytotoxicity in MM. Corresponding Author: Dharminder Chauhan, PhD Disclosures Chauhan: Stemline Therapeutics: Consultancy.


1990 ◽  
Vol 171 (6) ◽  
pp. 1965-1979 ◽  
Author(s):  
M Suthanthiran

Transmembrane signaling of normal human T cells was explored with mAbs directed at TCR, CD2, CD4, CD5, or CD8 antigens and highly purified CD4+ T cells and CD8+ T cells. Our experiments explicitly show that: (a) crosslinkage of TCR with the CD2 antigen, and not independent crosslinking of TCR and of CD2 antigen or crosslinking of either protein with the CD4 or CD8 antigen induces significant proliferation independent of co-stimulatory signals (e.g., accessory cells, recombinant lymphokines, or tumor promoter), (b) F(ab')2 fragments of mAb directed at the TCR and F(ab')2 anti-CD2, crosslinked with F(ab')2 fragments of rabbit anti-mouse IgG, promote the proliferation of highly purified T cells, (c) a prompt and sustained increase in intracellular free Ca2+ concentration results from crosslinkage of TCR with the CD2 antigen, (d) T cell proliferation induced by this novel approach is curtailed by EGTA and by direct or competitive inhibitors of PKC, (e) crosslinkage of TCR with the CD2 antigen results in the transcriptional activation and translation of the gene for IL-2 and in the expression of IL-2 receptor alpha (CD25), (f) anti-CD25 mAbs inhibit T cell proliferation initiated by crosslinkage of TCR with the CD2 antigen, and recombinant IL-2 restores the proliferative response. Our first demonstration that crosslinkage of TCR with the CD2 antigen induces proliferation of normal human CD4+ T cells and CD8+ T cells, in addition to revealing a novel activation mechanism utilizable by the two major subsets of T cells, suggest that the CD2 antigen might be targeted for the regulation of antigen-specific T cell immunity (e.g., organ transplantation).


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A22.2-A23
Author(s):  
J Festag ◽  
T Thelemann ◽  
M Schell ◽  
S Raith ◽  
S Michel ◽  
...  

BackgroundThe so-called adenosine axis has emerged as a promising therapeutic target pathway as high adenosine levels in the tumor microenvironment contribute to the suppression of antitumor immune responses. The ectonucleotidases CD39 and CD73 act in concert to degrade extracellular immune-stimulating adenosine triphosphate (ATP) to immunosuppressive adenosine. According to the current model, subsequent suppression of effector immune cell function is caused by binding of adenosine to adenosine receptors like the A2a receptor (A2aR). The ectonucleotidases CD39 and CD73 as well as the A2aR have emerged as molecular targets within the adenosine axis with currently more than 20 clinical trials investigating antitumor effects of CD39-, CD73- or A2aR blockade. We aimed to perform a direct comparison of these targets with regard to their roles in regulating T-cell proliferation and IFN-γ secretion.Materials and MethodsCD39 and CD73 expression was suppressed using LNAplusTM antisense oligonucleotides (ASOs). ASOs were synthesized as gapmers with flanking locked nucleic acids (LNA) to increase stability and affinity to the target RNA, leaving a central gap for recruitment of the RNA-degrading enzyme RNaseH I. Knockdown efficacy of ASOs on mRNA and protein level was investigated in primary human T cells. Furthermore, the effects of ATP, AMP and adenosine analogues on T–cell proliferation and IFN–γ secretion were investigated. A2aR was blocked using small molecule inhibitors that are currently under clinical investigation.ResultsTreatment of human T cells with LNA-modified ASOs specific for human CD39 and CD73 resulted in potent target knockdown in vitro without the use of a transfection reagent. T-cell proliferation was reduced after addition of ATP to activated T cells that was completely reverted by ASO-mediated suppression of CD39 and/or CD73 expression but not A2aR inhibition. Adenosine analogues inhibited IFN–γ secretion of activated T cells, however, they did not suppress T-cell proliferation. Blockade of the adenosine kinase was able to revert the anti-proliferative effect of ATP degradation products, arguing for downstream metabolites of adenosine, but not A2aR signaling, being responsible for the suppression of T-cell proliferation.ConclusionsCytokine secretion and proliferation of T cells might be differentially regulated by the adenosine axis. Adenosine might primarily affect cytokine secretion via A2aR signaling, whereas adenosine metabolites might especially impair proliferation of activated T cells independent from A2aR signaling. Therefore, inhibition of CD39 and/or CD73 holds exceptional advantages over A2aR blockade as both, A2aR dependent and A2aR independent effects of ATP degradation products are targeted simultaneously.Disclosure InformationJ. Festag: A. Employment (full or part-time); Significant; Secarna Pharmaceuticals GmbH & Co. KG. T. Thelemann: A. Employment (full or part-time); Significant; Secarna Pharmaceuticals GmbH & Co. KG. M. Schell: A. Employment (full or part-time); Significant; Secarna Pharmaceuticals GmbH & Co. KG. S. Raith: A. Employment (full or part-time); Significant; Secarna Pharmaceuticals GmbH & Co. KG. S. Michel: A. Employment (full or part-time); Significant; Secarna Pharmaceuticals GmbH & Co. KG. R. Klar: A. Employment (full or part-time); Significant; Secarna Pharmaceuticals GmbH & Co. KG. F. Jaschinski: A. Employment (full or part-time); Significant; Secarna Pharmaceuticals GmbH & Co. KG.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 420-428 ◽  
Author(s):  
Chantal Cerdan ◽  
Edgar Serfling ◽  
Daniel Olive

Abstract Chemokines are involved in the regulation of leukocyte migration and for some of them, T-cell costimulation. To date, the only direct property of lymphotactin (Lptn), the unique member of the C class of chemokines, consists of T-cell chemoattraction. This report describes a novel function for Lptn in human T-lymphocyte biology, by demonstrating the direct ability of Lptn to both inhibit and costimulate CD4+ and CD8+ T-cell activation, respectively. Lptn but not RANTES inhibited CD4+ T-cell proliferation, through a decreased production of Th1 (interleukin [IL]-2, interferon [IFN]-γ) but not Th2 (IL-4, IL-13) lymphokines, and decreased IL-2R expression. Transfections in Jurkat cells showed a Lptn-mediated transcriptional down-regulation of gene-promoter activities specific for Th1-type lymphokines, as well as of nuclear factor of activated T cells (NF-AT) but not AP-1 or NF-ΚB enhancer activities. This suppressive action of Lptn could be compensated by overexpression of NF-ATc but not NF-ATp. CD4+ T-cell proliferation was completely restored by exogenous IL-2 or reversed by pertussis toxin, wortmannin, and genistein, suggesting the involvement of multiple partners in Lptn signaling. In contrast to CD4+ cells, Lptn exerted a potent costimulatory activity on CD8+ T-cell proliferation and IL-2 secretion. These data provide important insights into the role of Lptn in differential regulation of normal human T-cell activation and its possible implication in immune response disorders.


1997 ◽  
Vol 37 (2-3) ◽  
pp. 209-220 ◽  
Author(s):  
Kenji Yamashita ◽  
Tetsu Kakutani ◽  
Takehisa Ohashi ◽  
Toshiji Saibara

1985 ◽  
Vol 161 (4) ◽  
pp. 641-656 ◽  
Author(s):  
T Hara ◽  
S M Fu

Three monoclonal antibodies (mAb), of IgG1, IgG2a, and IgM isotypes, raised against the T3 complex, were used to probe the activation of human T cells. The IgM antibody 235 was not mitogenic for peripheral blood mononuclear cells (PMC). It efficiently blocked the proliferation of PMC induced by T cell mitogens, alloantigens, and soluble antigens. The other two antibodies were mitogenic, and behaved similarly to Leu 4 and OKT3, respectively. In T cell preparations with less than 0.1% monocytes (as assayed by nonspecific esterase staining), all three mAb were not mitogenic. They failed to induce either interleukin 2 (IL-2) receptor expression or IL-2 secretion. Addition of IL-1 failed to collaborate with anti-T3 mAb to induce these T cells to proliferate, but IL-2 enhanced T cell proliferation slightly. Monocyte-depleted T cells, however, proliferated in response to all three anti-T3 mAb, when TPA was added, in a dose-dependent manner. TPA induced a low level of IL-2 receptor expression in monocyte-depleted T cells, without inducing IL-2 secretion. Anti-T3 plus TPA induced a marked enhancement in both quantity and intensity of IL-2 receptor expression. IL-2 secretion was also detected. These results indicate that anti-T3 IgM can deliver an inductive signal despite its blockage of T cell proliferation, and that two signals are necessary and perhaps sufficient to induce human T cell activation and proliferation.


2002 ◽  
Vol 32 (10) ◽  
pp. 2888-2896 ◽  
Author(s):  
Claire N. Manzotti ◽  
Helen Tipping ◽  
Laura C. A. Perry ◽  
Karen I. Mead ◽  
Patrick J. Blair ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document