scholarly journals Audiovisual task switching rapidly modulates sound encoding in mouse auditory cortex

2021 ◽  
Author(s):  
Ryan J Morrill ◽  
James Bigelow ◽  
Jefferson DeKloe ◽  
Andrea R Hasenstaub

In everyday behavior, sensory systems are in constant competition for attentional resources, but the cellular and circuit-level mechanisms of modality-selective attention remain largely uninvestigated. We conducted translaminar recordings in mouse auditory cortex (AC) during an audiovisual (AV) attention shifting task. Attending to sound elements in an AV stream reduced both pre-stimulus and stimulus-evoked spiking activity, primarily in deep layer neurons. Despite reduced spiking, stimulus decoder accuracy was preserved, suggesting improved sound encoding efficiency. Similarly, task-irrelevant probe stimuli during intertrial intervals evoked fewer spikes without impairing stimulus encoding, indicating that these attention influences generalized beyond training stimuli. Importantly, these spiking reductions predicted trial-to-trial behavioral accuracy during auditory attention, but not visual attention. Together, these findings suggest auditory attention facilitates sound discrimination by filtering sound-irrelevant spiking in AC, and that the deepest cortical layers may serve as a hub for integrating extramodal contextual information.

2021 ◽  
Vol 35 (1) ◽  
pp. 15-22
Author(s):  
Kohei Fuseda ◽  
Jun’ichi Katayama

Abstract. Interest is a positive emotion related to attention. The event-related brain potential (ERP) probe technique is a useful method to evaluate the level of interest in dynamic stimuli. However, even in the irrelevant probe technique, the probe is presented as a physical stimulus and steals the observer’s attentional resources, although no overt response is required. Therefore, the probe might become a problematic distractor, preventing deep immersion of participants. Heartbeat-evoked brain potential (HEP) is a brain activity, time-locked to a cardiac event. No probe is required to obtain HEP data. Thus, we aimed to investigate whether the HEP can be used to evaluate the level of interest. Twenty-four participants (12 males and 12 females) watched attractive and unattractive individuals of the opposite sex in interesting and uninteresting videos (7 min each), respectively. We performed two techniques each for both the interesting and the uninteresting videos: the ERP probe and the HEP techniques. In the former, somatosensory stimuli were presented as task-irrelevant probes while participants watched videos: frequent (80%) and infrequent (20%) stimuli were presented at each wrist in random order. In the latter, participants watched videos without the probe. The P2 amplitude in response to the somatosensory probe was smaller and the positive wave amplitudes of HEP were larger while watching the videos of attractive individuals than while watching the videos of unattractive ones. These results indicate that the HEP technique is a useful method to evaluate the level of interest without an external probe stimulus.


2008 ◽  
Author(s):  
Bertram Scharf ◽  
Adam Reeves

2001 ◽  
Vol 15 (2) ◽  
pp. 123-141 ◽  
Author(s):  
Edmund Keogh ◽  
Christopher C. French

Examinations are perhaps one of the main methods of assessment in education. Unfortunately, there are some individuals who are so fearful of such events that performance is impaired. Test anxiety is believed to be the trait that predisposes individuals to react negatively to examinations and tests. One way in which it is believed that test anxiety affects performance is by increasing susceptibility to distraction from task‐irrelevant material. However, few studies have directly investigated this impairment. An experiment was therefore conducted to investigate susceptibility to distraction in high and low test‐anxious students. The task used was based on one developed by Mathews, May, Mogg and Eysenck (1990), which distinguishes between focused attention and selective search. In order to determine whether a specific susceptibility to distraction exists, the distractors were varied in terms of valence and relevance to examinations. Since test anxiety is a situation‐specific trait, an evaluation‐related stressor was used to trigger test‐anxious reactions. A specific susceptibility to distraction from threat was found amongst high test‐anxious participants who received the evaluation‐related stressor. However, this effect was only found when participants were using focused attention. This suggests that the disturbed performance often found to be associated with test anxiety might be due to an inability to ignore threatening material when attempting to focus attentional resources. These results are discussed in light of current theories of test anxiety and implications for educational practice. Copyright © 2001 John Wiley & Sons, Ltd.


1975 ◽  
Vol 38 (2) ◽  
pp. 231-249 ◽  
Author(s):  
M. M. Merzenich ◽  
P. L. Knight ◽  
G. L. Roth

The representation of sound frequency (and of the cochlear partition) within primary auditory cortex has been investigated with use of microelectrode-mapping techniques in a series of 25 anesthetized cats. Among the results were the following: 1) Within vertical penetrations into AI, best frequency and remarkably constant for successively studied neurons across the active middle and deep cortical layers. 2) There is an orderly representation of frequency (and of represented cochlear place) within AI. Frequency is rerepresented across the mediolateral dimension of the field. On an axis perpendicular to this plane of rerepresentation, best-frequency (represented cochlear place) changes as a simple function of cortical location. 3) Any given frequency band (or sector of the cochlear partition) is represented across a belt of cortex of nearly constant width that runs on a nearly straight axis across AI. 4) There is a disproportionately large cortical surface representation of the highest-frequency octaves (basal cochlea) within AI. 5) The primary and secondary field locations were somewhat variable, when referenced to cortical surface landmarks. 6) Data from long penetrations passing down the rostral bank of the posterior ectosylvian sulcus were consistent with the existence of a vertical unit of organization in AI, akin to cortical columns described in primary visual and somatosensory cortex. 7) Responses to tonal stimuli were encountered in fields dorsocaudal, caudal, ventral, and rostral to AI. There is an orderly representation of the cochlea within the field rostal to AI, with a reversal in best frequencies across its border with AI. 8) Physiological definitions of AI boundaries are consistent with their cytoarchitectonic definition. Some of the implications of these findings are discussed.


2019 ◽  
Vol 84 (7) ◽  
pp. 1877-1889 ◽  
Author(s):  
Toby J. Ellmers ◽  
Adam J. Cocks ◽  
William R. Young

Abstract Objectives Threats to balance, and subsequent increases in fall-related anxiety, can disrupt attentional processing during gait in older adults, leading to behavioral adaptations which may increase fall risk. However, limited research has investigated what changes in attention occur to contribute to these disruptions. The aim of this research was to describe changes in attention that occur during gait when older adults’ balance is threatened, while exploring how previous fall history and trait movement reinvestment (conscious monitoring and control of movement) also influence attention. Methods Forty older adults reported where they focus their attention when walking during two scenarios: (1) when they are relaxed and there is little risk of falling, and; (2) when their balance is threatened and they are anxious of falling. Results During the high-threat condition, participants reported greater attention towards movement processes, threats to balance, worries/disturbing thoughts and self-regulatory strategies, with less attention directed towards task-irrelevant thoughts. However, fall history influenced attentional focus, with fallers directing greater attention towards worries/disturbing thoughts. Contrary to predictions, trait movement reinvestment was not associated with attention directed towards movement processes. Discussion As processing worries/disturbing thoughts will likely reduce attentional resources available for effective postural control, we highlight this as one potential area to target interventions aimed at reducing the likelihood of repeated falling.


Neuroscience ◽  
2013 ◽  
Vol 246 ◽  
pp. 94-107 ◽  
Author(s):  
Miguel Ángel Pérez ◽  
Catherine Pérez-Valenzuela ◽  
Felipe Rojas-Thomas ◽  
Juan Ahumada ◽  
Marco Fuenzalida ◽  
...  

2015 ◽  
Vol 112 (52) ◽  
pp. 16036-16041 ◽  
Author(s):  
Federico De Martino ◽  
Michelle Moerel ◽  
Kamil Ugurbil ◽  
Rainer Goebel ◽  
Essa Yacoub ◽  
...  

Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that—in this highly columnar cortex—task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds.


2017 ◽  
Author(s):  
Laura Gwilliams ◽  
Tal Linzen ◽  
David Poeppel ◽  
Alec Marantz

AbstractSpeech is an inherently noisy and ambiguous signal. In order to fluently derive meaning, a listener must integrate contextual information to guide interpretations of the sensory input. While many studies have demonstrated the influence of prior context on speech perception, the neural mechanisms supporting the integration of subsequent context remain unknown. Using magnetoencephalography, we analysed responses to spoken words with a varyingly ambiguous onset phoneme, the identity of which is later disambiguated at the lexical uniqueness point1. Our findings suggest that primmary auditory cortex is sensitive to phonological ambiguity very early during processing — at just 50 ms after onset. Subphonemic detail is preserved in auditory cortex over long timescales, and re-evoked at subsequent phoneme positions. Commitments to phonological categories occur in parallel, resolving on the shorter time-scale of ~450 ms. These findings provide evidence that future input determines the perception of earlier speech sounds by maintaining sensory features until they can be integrated with top down lexical information.Significance statementThe perception of a speech sound is determined by its surrounding context, in the form of words, sentences, and other speech sounds. Often, such contextual information becomes available later than the sensory input. The present study is the first to unveil how the brain uses this subsequent information to aid speech comprehension. Concretely, we find that the auditory system supports prolonged access to the transient acoustic signal, while concurrently making guesses about the identity of the words being said. Such a processing strategy allows the content of the message to be accessed quickly, while also permitting re-analysis of the acoustic signal to minimise parsing mistakes.


2020 ◽  
Author(s):  
Greta Limoni ◽  
Mathieu Niquille ◽  
Sahana Murthy ◽  
Denis Jabaudon ◽  
Alexandre Dayer

SummaryIn the mammalian cerebral cortex, the developmental events governing the allocation of different classes of inhibitory interneurons (INs) into distinct cortical layers are poorly understood. Here we report that the guidance receptor PlexinA4 (PLXNA4) is upregulated in serotonin receptor 3a-expressing (HTR3A+) cortical INs (hINs) as they invade the cortical plate and that it regulates their laminar allocation to superficial cortical layers. We find that the PLXNA4 ligand Semaphorin3A (SEMA3A) acts as a chemorepulsive factor on hINs migrating into the nascent cortex and demonstrate that SEMA3A specifically controls their laminar positioning through PLXNA4. We identify that deep layer INs constitute a major source of SEMA3A in the developing cortex and demonstrate that cell-type specific genetic deletion of SEMA3A in these INs specifically affects the laminar allocation of hINs. These data demonstrate that in the neocortex, deep layer INs control the laminar allocation of hINs into superficial layers.


Sign in / Sign up

Export Citation Format

Share Document