scholarly journals Transcriptional profiles of a foliar fungal endophyte (Pestalotiopsis, Ascomycota) and its endohyphal bacterium (Luteibacter, Gammaproteobacteria) in co-culture support sulfur exchange and growth regulation

2021 ◽  
Author(s):  
Justin P Shaffer ◽  
Morgan E Carter ◽  
Joseph E. Spraker ◽  
Meara Clark ◽  
Brian Smith ◽  
...  

Symbiosis with bacteria is widespread among eukaryotes, including fungi. Bacteria that live within fungal mycelia (endohyphal bacteria) occur in many plant-associated fungi, including diverse Mucoromycota and Dikarya. Pestalotiopsis sp. 9143 is a filamentous ascomycete isolated originally as a foliar endophyte of Platycladus orientalis (Cupressaceae). It is infected naturally with the endohyphal bacterium Luteibacter sp. 9143, which influences auxin and enzyme production by its fungal host. Previous studies have used transcriptomics to examine similar symbioses between endohyphal bacteria and root-associated fungi such as arbuscular mycorrhizal fungi and plant pathogens. However, currently there are no gene expression studies of endohyphal bacteria of Ascomycota, the most species-rich fungal phylum. We developed methods for assessing gene expression by Pestalotiopsis sp. and Luteibacter sp. when grown in co-culture and when each was grown axenically. Our assays showed that the density of Luteibacter sp. in co-culture was greater than in axenic culture, but the opposite was true for the Pestalotiopsis sp. Dual RNA-seq data demonstrate that growing in co-culture modulates developmental and metabolic processes in both the fungus and bacterium, potentially through changes in the balance of organic sulfur via methionine acquisition. Our analyses also suggest an unexpected, potential role of the bacterial type VI secretion system in symbiosis establishment, expanding current understanding of the scope and dynamics of fungal-bacterial symbioses.

2014 ◽  
Vol 167 (2) ◽  
pp. 545-557 ◽  
Author(s):  
Naoya Takeda ◽  
Yoshihiro Handa ◽  
Syusaku Tsuzuki ◽  
Mikiko Kojima ◽  
Hitoshi Sakakibara ◽  
...  

2005 ◽  
Vol 85 (1) ◽  
pp. 31-40 ◽  
Author(s):  
C. Plenchette ◽  
C. Clermont-Dauphin ◽  
J. M. Meynard ◽  
J. A. Fortin

Market globalization, demographic pressure, and environmental degradation have led us to reconsider many of our current agricultural systems. The heavy use of chemical inputs, including fertilizers and pesticides, has resulted in pollution, decreased biodiversity in intensively-farmed regions, degradation of fragile agro-ecosystems, and prohibitive costs for many farmers. Low input sustainable cropping systems should replace conventional agriculture, but this requires a more comprehensive understanding of the biological interactions within agro-ecosystems. Mycorrhizal fungi appear to be the most important telluric organisms to consider. Mycorrhizae, which result from a symbiosis between these fungi and plant roots, are directly involved in plant mineral nutrition, the control of plant pathogens, and drought tolerance. Most horticultural and crop plants are symbiotic with arbuscular mycorrhizal fungi. Mycorrhizal literature is abundant, showing that stimulation of plant growth can be mainly attributed to improved phosphorous nutrition. Although the mycorrhizal potential of its symbiosis to improve crop production is widely recognized, it is not implemented in agricultural systems. There is an urgent need to improve and widely apply analytical methods to evaluate characteristics such as, relative field mycorrhizal dependency, soil mycorrhizal infectivity, and mycorrhizal receptivity of soil. Decreased use of fertilizers, pesticides, and tillage will favour arbuscular mycorrhizal fungi. However, shifting from one system to a more sustainable one is not easy since all components of the cropping system are closely linked. Different cases, from actual agricultural practices in different countries, are analyzed to highlight situations in which mycorrhizae might or might not play a role in developing more sustainable agriculture. Key words: Cropping systems, mycorrhizae, sustainability, technical itineraries, rotation


2021 ◽  
Author(s):  
QiaoMing Zhang ◽  
Minggui Gong ◽  
Shanshan Xu ◽  
Angran Zhang ◽  
Jiangfeng Yuan ◽  
...  

Abstract Arbuscular mycorrhizal fungi (AMF) can protect host plants against arsenic (As) toxicity. However, knowledge on the response of woody leguminous under As stress is limited so far. In this study, Sophora viciifolia seedlings were inoculated with/without AMF Rhizophagus intraradices, and S. viciifolia were grown in three levels (0, 50, and 100 mg As kg−1 soil) of As-polluted soil though the potted experiments. The objective of this study was to investigate the influences of AMF symbiosis on woody leguminous under As stress. Some physiological and biochemical parameters of S. viciifolia, which included the plant growth, photosynthesis, oxidative damage, antioxidant enzyme activities and gene expression of phytochelatins (PCs), were analyzed. The results showed that As toxicity in soils inhibited the AM colonization rate, plant growth, photosynthesis, increased the oxidative damage and antioxidant enzyme activities, and up-regulated the gene expression of SvPCS1 in the leaves and roots of S. viciifolia seedlings. However, compared with non-inoculated S. viciifolia at the same As level, R. intraradices-inoculated S. viciifolia had higher shoot and root dry weight, plant height, root length, photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), maximal photochemical efficiency of PSII photochemistry (Fv/Fm), actual quantum yield (ΦPSII), and photochemical quenching values (qP), as well as lower intercellular CO2 concentration (Ci) and non-photochemical quenching values (NPQ). R. intraradices inoculation inhibited the malondialdehyde (MDA), H2O2, and O2•– concentrations, but improved the activities of antioxidative enzymes (SOD, POD, and CAT) in S. viciifolia leaves and roots. The gene expression of SvPCS1 in the leaves and roots was obviously up-regulated by R. intraradices inoculation. These results demonstrated that R. intraradices inoculation enhanced the As tolerance of S. viciifolia seedlings, owing to the beneficial effects of AMF symbiosis on improving the plant growth, gas exchange, chlorophyll fluorescence, antioxidant enzymes, reactive oxygen species and gene expression of SvPCS1 in S. viciifolia seedlings. R. intraradices is possible to get involved in the defence response of S. viciifolia seedlings against. As toxicity stress. This investigation got more profound insights into As tolerance mechanisms of woody leguminous associated with AMF symbiosis.


Planta ◽  
2007 ◽  
Vol 227 (3) ◽  
pp. 671-680 ◽  
Author(s):  
Nadja Feddermann ◽  
Thomas Boller ◽  
Peter Salzer ◽  
Sara Elfstrand ◽  
Andres Wiemken ◽  
...  

2011 ◽  
Vol 24 (2) ◽  
pp. 260-270 ◽  
Author(s):  
Arijit Mukherjee ◽  
Jean-Michel Ané

Arbuscular mycorrhizal (AM) fungi stimulate root development and induce expression of mycorrhization-specific genes in both eudicots and monocots. Diffusible factors released by AM fungi have been shown to elicit similar responses in Medicago truncatula. Colonization of roots by AM fungi is inhibited by ethylene. We compared the effects of germinating spore exudates (GSE) from Glomus intraradices in monocots and in eudicots, their genetic control, and their regulation by ethylene. GSE modify root architecture and induce symbiotic gene expression in both monocots and eudicots. The genetic regulation of root architecture and gene expression was analyzed using M. truncatula and rice symbiotic mutants. These responses are dependent on the common symbiotic pathway as well as another uncharacterized pathway. Significant differences between monocots and eudicots were observed in the genetic control of plant responses to GSE. However, ethylene inhibits GSE-induced symbiotic gene expression and root development in both groups. Our results indicate that GSE signaling shares similarities and differences in monocots versus eudicots, that only a subset of AM signaling pathways has been co-opted in legumes for the establishment of root nodulation with rhizobia, and that regulation of these pathways by ethylene is a feature conserved across higher land plants.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Kristýna Floková ◽  
Mahdere Shimels ◽  
Beatriz Andreo Jimenez ◽  
Nicoletta Bardaro ◽  
Miroslav Strnad ◽  
...  

Abstract Background Strigolactones represent the most recently described group of plant hormones involved in many aspects of plant growth regulation. Simultaneously, root exuded strigolactones mediate rhizosphere signaling towards beneficial arbuscular mycorrhizal fungi, but also attract parasitic plants. The seed germination of parasitic plants induced by host strigolactones leads to serious agricultural problems worldwide. More insight in these signaling molecules is hampered by their extremely low concentrations in complex soil and plant tissue matrices, as well as their instability. So far, the combination of tailored isolation—that would replace current unspecific, time-consuming and labour-intensive processing of large samples—and a highly sensitive method for the simultaneous profiling of a broad spectrum of strigolactones has not been reported. Results Depending on the sample matrix, two different strategies for the rapid extraction of the seven structurally similar strigolactones and highly efficient single-step pre-concentration on polymeric RP SPE sorbent were developed and validated. Compared to conventional methods, controlled temperature during the extraction and the addition of an organic modifier (acetonitrile, acetone) to the extraction solvent helped to tailor strigolactone isolation from low initial amounts of root tissue (150 mg fresh weight, FW) and root exudate (20 ml), which improved both strigolactone stability and sample purity. We have designed an efficient UHPLC separation with sensitive MS/MS detection for simultaneous analysis of seven natural strigolactones including their biosynthetic precursors—carlactone and carlactonoic acid. In combination with the optimized UHPLC–MS/MS method, attomolar detection limits were achieved. The new method allowed successful profiling of seven strigolactones in small exudate and root tissue samples of four different agriculturally important plant species—sorghum, rice, pea and tomato. Conclusion The established method provides efficient strigolactone extraction with aqueous mixtures of less nucleophilic organic solvents from small root tissue and root exudate samples, in combination with rapid single-step pre-concentration. This method improves strigolactone stability and eliminates the co-extraction and signal of matrix-associated contaminants during the final UHPLC–MS/MS analysis with an electrospray interface, which dramatically increases the overall sensitivity of the analysis. We show that the method can be applied to a variety of plant species.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1459
Author(s):  
Shalem Raju Modi ◽  
Tarja Kokkola

GR24 is a synthetic strigolactone analog, demonstrated to regulate the development of plants and arbuscular mycorrhizal fungi. GR24 possesses anti-cancer and anti-apoptotic properties, enhances insulin sensitivity and mitochondrial biogenesis in skeletal myotubes, inhibits adipogenesis, decreases inflammation in adipocytes and macrophages and downregulates the expression of hepatic gluconeogenic enzymes. Transcription factor Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) is a master regulator of antioxidant response, regulating a multitude of genes involved in cellular stress responses and anti-inflammatory pathways, thus maintaining cellular redox homeostasis. Nrf2 activation reduces the deleterious effects of mitochondrial toxins and has multiple roles in promoting mitochondrial function and dynamics. We studied the role of GR24 on gene expression in rat L6 skeletal muscle cells which were differentiated into myotubes. The myotubes were treated with GR24 and analyzed by microarray gene expression profiling. GR24 upregulated the cytoprotective transcription factor Nrf2 and its target genes, activating antioxidant defences, suggesting that GR24 may protect skeletal muscle from the toxic effects of oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document