scholarly journals Arbuscular Mycorrhizal Fungi Alleviate Arsenic Toxicity in Sophora Viciifolia Hance. by Improving The Growth, Photosynthesis, Reactive Oxygen Species and Gene Expression of Phytochelatin Synthase

Author(s):  
QiaoMing Zhang ◽  
Minggui Gong ◽  
Shanshan Xu ◽  
Angran Zhang ◽  
Jiangfeng Yuan ◽  
...  

Abstract Arbuscular mycorrhizal fungi (AMF) can protect host plants against arsenic (As) toxicity. However, knowledge on the response of woody leguminous under As stress is limited so far. In this study, Sophora viciifolia seedlings were inoculated with/without AMF Rhizophagus intraradices, and S. viciifolia were grown in three levels (0, 50, and 100 mg As kg−1 soil) of As-polluted soil though the potted experiments. The objective of this study was to investigate the influences of AMF symbiosis on woody leguminous under As stress. Some physiological and biochemical parameters of S. viciifolia, which included the plant growth, photosynthesis, oxidative damage, antioxidant enzyme activities and gene expression of phytochelatins (PCs), were analyzed. The results showed that As toxicity in soils inhibited the AM colonization rate, plant growth, photosynthesis, increased the oxidative damage and antioxidant enzyme activities, and up-regulated the gene expression of SvPCS1 in the leaves and roots of S. viciifolia seedlings. However, compared with non-inoculated S. viciifolia at the same As level, R. intraradices-inoculated S. viciifolia had higher shoot and root dry weight, plant height, root length, photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), maximal photochemical efficiency of PSII photochemistry (Fv/Fm), actual quantum yield (ΦPSII), and photochemical quenching values (qP), as well as lower intercellular CO2 concentration (Ci) and non-photochemical quenching values (NPQ). R. intraradices inoculation inhibited the malondialdehyde (MDA), H2O2, and O2•– concentrations, but improved the activities of antioxidative enzymes (SOD, POD, and CAT) in S. viciifolia leaves and roots. The gene expression of SvPCS1 in the leaves and roots was obviously up-regulated by R. intraradices inoculation. These results demonstrated that R. intraradices inoculation enhanced the As tolerance of S. viciifolia seedlings, owing to the beneficial effects of AMF symbiosis on improving the plant growth, gas exchange, chlorophyll fluorescence, antioxidant enzymes, reactive oxygen species and gene expression of SvPCS1 in S. viciifolia seedlings. R. intraradices is possible to get involved in the defence response of S. viciifolia seedlings against. As toxicity stress. This investigation got more profound insights into As tolerance mechanisms of woody leguminous associated with AMF symbiosis.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
María Josefina Bompadre ◽  
Mariana Pérgola ◽  
Laura Fernández Bidondo ◽  
Roxana Paula Colombo ◽  
Vanesa Analía Silvani ◽  
...  

The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains ofRhizophagus irregularis(GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1531
Author(s):  
Narcisa Urgiles-Gómez ◽  
María Eugenia Avila-Salem ◽  
Paúl Loján ◽  
Max Encalada ◽  
Leslye Hurtado ◽  
...  

Coffee is an important, high-value crop because its roasted beans are used to produce popular beverages that are consumed worldwide. Coffee plantations exist in over 70 countries and constitute the main economic activity of approximately 125 million people. Currently, there is global concern regarding the excessive use of agrochemicals and pesticides in agriculture, including coffee crops. This situation has motivated researchers, administrators, and farmers to seek ecologically friendly alternatives to decrease the use of synthetic fertilizers and pesticides. In the last decades, multiple studies of the rhizosphere, at the chemical, physical and biological levels, have improved our understanding of the importance of beneficial microorganisms to plant health and growth. This review aims to summarize the state of the use of plant growth-promoting microorganisms (PGPM) in coffee production, where the most extensively studied microorganisms are beneficial plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This review also contains information on PGPM, in regard to plantations at different latitudes, isolation techniques, mass multiplication, formulation methods, and the application of PGPM in nurseries, monoculture, and coffee agroforestry systems. Finally, this review focuses on relevant research performed during the last decade that can help us improve sustainable coffee production.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


Author(s):  
Kamile Ulukapı ◽  
Zehra Kurt ◽  
Sevinc Sener

Arbuscular mycorrhizal fungi (AMF), which are beneficial soil organisms, have an important role in the uptake of plant nutrients by roots and thus help to healthy plant growth. The aim of this study was to determine the effects of AMF inoculation on the development of water-deficiency applied pepper plants. In this study, Tesla F1 pepper cultivars, Glomus etunicatum inoculated and without Glomus etunicatum, were exposed to four different irrigation regimes (25I, 50I, 75I, 100I). At the end of the experiment these plants were compared in terms of some vegetative and fruit properties. For this purpose, at the end of the trial; shoot length (cm), root length (cm), root spread (cm), number of leaves, leaf width and length (mm), stem diameter (mm), fruit width (mm), fruit length (mm), root and shoot weights (g), fruit pH, total soluble solid content and chlorophyll index were measured. P (phosphorus) and K (potassium) contents of leaves samples taken from plants were determined. As a result, it was determined that 75I irrigation regime gave the best results in terms of both plant growth and fruit properties in all mycorrhizal and non-mycorrhizal plants. It was also concluded that 75% irrigation level is sufficient for plant growth.


2008 ◽  
Vol 5 (3) ◽  
pp. 395-398
Author(s):  
Baghdad Science Journal

Arbuscular mycorrhizal fungi and sulphur foam added either at direct seeding or at transplanting decreased the effects of nematode (Meloidogyne javanica) on eggplant growth, and improved plant health. Experiments were conducted to study the possible interactions between the Mycorrhizal fungi (Glomus mossae and Gigaspora spp.) and sulphur foam to control M. javanica on eggplant at seed or seedling stage. Experiment at seed stage treated with Mycorrhiza or sulphur foam alone or together stimulated the growth and reduced Nematode infestation significantly. Treated plant at seedling stage increased plant growth and reduced the number of galls /gm of root system. The interaction between Mycorrhiza and sulpher foam treatments was not significant.


Sign in / Sign up

Export Citation Format

Share Document