scholarly journals Synaptic Activity-Dependent Changes in the Hippocampal Palmitoylome

2021 ◽  
Author(s):  
Glory Nasseri ◽  
Nusrat Matin ◽  
Kira Tosefsky ◽  
Richard Greg Stacey ◽  
Stephane Flibotte ◽  
...  

Dynamic protein S-palmitoylation is critical for neuronal function, development, and synaptic plasticity. Activity-dependent changes in palmitoylation have been observed for several neuronal substrates, however a full characterization of the activity-regulated palmitoylome is lacking. Here, we use an unbiased approach to identify differentially palmitoylated proteins in the mouse hippocampus following context-dependent fear conditioning. Of the 121 differentially palmitoylated proteins identified 63 were synaptic proteins, while others were associated with metabolic functions, cytoskeletal organization, and signal transduction. The vast majority of synaptic proteins exhibited increased palmitoylation following fear conditioning, whereas proteins that exhibited decreased palmitoylation were predominantly associated with metabolic processes. We show a link between dynamic palmitoylation and synapse plasticity by demonstrating that the palmitoylation of one of our identified proteins, PRG-1/LPPR4, is essential for activity-induced insertion of AMPA receptors into the postsynaptic membrane. Together, this study identifies networks of synaptic proteins whose dynamic palmitoylation may play a central role in learning and memory.

2013 ◽  
Vol 6 (273) ◽  
pp. ec94-ec94 ◽  
Author(s):  
Nancy R. Gough

The cellular model of memory is a synaptic plasticity event called long-term potentiation (LTP). LTP can be divided into two phases: The early phase (E-LTP) lasts less than 2 hours and does not require new protein synthesis, and the late phase (L-LTP) can last many hours and requires new protein synthesis. Translation of mRNAs is regulated through various mechanisms, one of which is the binding of poly(A)-binding protein (PABP) to the poly(A) tail of the target mRNA. PAIP2A and PAIP2B (PAIP-interacting protein 2A and 2B) inhibit translation by interfering with PABP function. Khoutorsky et al. found that degradation of PAIP2A, which is the form that is abundant in the brain, linked synaptic activity to enhanced translation and contributed to learning and memory in mice. Hippocampal slices from Paip2a–/– mice showed L-LTP in response to a stimulus that only triggered E-LTP in slices from wild-type mice and showed impaired L-LTP in response to a stimulus that triggered L-LTP in slices from wild-type mice. Consistent with these electrophysiological studies, behavorial memory tests indicated that Paip2a–/– mice showed faster learning in spatial long-term memory tests in response to weak training but showed impaired learning in response to a long-term contextual fear conditioning test that used a strong training paradigm. Experiments with cultured neurons and hippocampal slices showed an activity-dependent decrease in the abundance of PAIP2A that could be prevented by pharmacological inhibition of the calcium-dependent proteases calpains. The calpain-dependent reduction in PAIP2A was also detected in mice subjected to the contextual fear conditioning paradigm, and infusion of calpain inhibitors impaired long-term contextual fear memory. Increased production of calcium-calmodulin kinase IIα (CaMKIIα) occurs in response to synaptic activity and is necessary for learning. The abundance of CaMKIIα in the hippocampus was increased in Paip2a–/– mice trained in a contextual fear conditioning paradigm compared with untrained mice or wild-type trained mice. This increase in CaMKIIα resulted from increased translation because CaMKIIα mRNA was shifted to heavy polysome fractions in the brains of Paip2a–/– trained mice and the association of PABP with this mRNA was greatest in the Paip2a–/– trained mice. Thus, activity-dependent degradation of a translation inhibitor contributes to the enhanced translation needed for learning and memory.A. Khoutorsky, A, Yanagiya, C. G. Gkogkas, M. R. Fabian, M. Prager-Khoutorsky, R. Cao, K. Gamache, F. Bouthiette, A. Parsyan, R. E. Sorge, J. S. Mogil, K. Nader, J.-C. Lacaille, N. Sonenberg, Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron78, 298–311 (2013). [Online Journal]


2019 ◽  
Author(s):  
Jonathan D. Lautz ◽  
Edward P. Gniffke ◽  
Emily A. Brown ◽  
Karen B. Immendorf ◽  
Ryan D. Mendel ◽  
...  

AbstractAt the post-synaptic density (PSD), large protein complexes dynamically form and dissociate in response to synaptic activity, comprising the biophysical basis for learning and memory. The use of detergents to both isolate the PSD fraction and release its membrane-associated proteins complicates studies of these activity-dependent protein interaction networks, because detergents can simultaneously disrupt the very interactions under study. Despite widespread recognition that different detergents yield different experimental results, the effect of detergent on activity-dependent synaptic protein complexes has not been rigorously examined. Here, we characterize the effect of three detergents commonly used to study synaptic proteins on activity-dependent protein interactions. We first demonstrate that SynGAP-containing interactions are more abundant in 1% Deoxycholate (DOC), while Shank-, Homer-and mGluR5-containing interactions are more abundant in 1% NP-40 or Triton. All interactions were detected preferentially in high molecular weight (HMW) complexes generated by size exclusion chromatography, although the detergent-specific abundance of proteins in HMW fractions did not correlate with the abundance of detected interactions. Activity-dependent changes in protein complexes were consistent across detergent types, suggesting that detergents do not isolate distinct protein pools with unique behaviors. However, detection of activity-dependent changes is more or less feasible in different detergents due to baseline solubility. Collectively, our results demonstrate that detergents affect the solubility of individual proteins, but activity-dependent changes in protein interactions, when detectable, are consistent across detergent types.


2019 ◽  
Vol 116 (12) ◽  
pp. 5727-5736 ◽  
Author(s):  
Mariline M. Silva ◽  
Beatriz Rodrigues ◽  
Joana Fernandes ◽  
Sandra D. Santos ◽  
Laura Carreto ◽  
...  

Homeostatic synaptic scaling is a negative feedback response to fluctuations in synaptic strength induced by developmental or learning-related processes, which maintains neuronal activity stable. Although several components of the synaptic scaling apparatus have been characterized, the intrinsic regulatory mechanisms promoting scaling remain largely unknown. MicroRNAs may contribute to posttranscriptional control of mRNAs implicated in different stages of synaptic scaling, but their role in these mechanisms is still undervalued. Here, we report that chronic blockade of glutamate receptors of the AMPA and NMDA types in hippocampal neurons in culture induces changes in the neuronal mRNA and miRNA transcriptomes, leading to synaptic upscaling. Specifically, we show that synaptic activity blockade persistently down-regulates miR-186-5p. Moreover, we describe a conserved miR-186-5p-binding site within the 3′UTR of the mRNA encoding the AMPA receptor GluA2 subunit, and demonstrate that GluA2 is a direct target of miR-186-5p. Overexpression of miR-186 decreased GluA2 surface levels, increased synaptic expression of GluA2-lacking AMPA receptors, and blocked synaptic scaling, whereas inhibition of miR-186-5p increased GluA2 surface levels and the amplitude and frequency of AMPA receptor-mediated currents, and mimicked excitatory synaptic scaling induced by synaptic inactivity. Our findings elucidate an activity-dependent miRNA-mediated mechanism for regulation of AMPA receptor expression.


2002 ◽  
Vol 357 (1420) ◽  
pp. 521-529 ◽  
Author(s):  
Shao Jun Tang ◽  
Erin M. Schuman

In neurons, many proteins that are involved in the transduction of synaptic activity and the expression of neural plasticity are specifically localized at synapses. How these proteins are targeted is not clearly understood. One mechanism is synaptic protein synthesis. According to this idea, messenger RNA (mRNA) translation from the polyribosomes that are observed at the synaptic regions provides a local source of synaptic proteins. Although an increasing number of mRNA species has been detected in the dendrite, information about the synaptic synthesis of specific proteins in a physiological context is still limited. The physiological function of synaptic synthesis of specific proteins in synaptogenesis and neural plasticity expression remains to be shown. Experiments aimed at understanding the mechanisms and functions f synaptic protein synthesis might provide important information about the molecular nature of neural plasticity.


2011 ◽  
Vol 106 (2) ◽  
pp. 710-721 ◽  
Author(s):  
Sunil A. Desai ◽  
Gregory A. Lnenicka

Postsynaptic intracellular Ca2+ concentration ([Ca2+]i) has been proposed to play an important role in both synaptic plasticity and synaptic homeostasis. In particular, postsynaptic Ca2+ signals can alter synaptic efficacy by influencing transmitter release, receptor sensitivity, and protein synthesis. We examined the postsynaptic Ca2+ transients at the Drosophila larval neuromuscular junction (NMJ) by injecting the muscle fibers with Ca2+ indicators rhod-2 and Oregon Green BAPTA-1 (OGB-1) and then monitoring their increased fluorescence during synaptic activity. We observed discrete postsynaptic Ca2+ transients along the NMJ during single action potentials (APs) and quantal Ca2+ transients produced by spontaneous transmitter release. Most of the evoked Ca2+ transients resulted from the release of one or two quanta of transmitter and occurred largely at synaptic boutons. The magnitude of the Ca2+ signals was correlated with synaptic efficacy; the Is terminals, which produce larger excitatory postsynaptic potentials (EPSPs) and have a greater quantal size than Ib terminals, produced a larger Ca2+ signal per terminal length and larger quantal Ca2+ signals than the Ib terminals. During a train of APs, the postsynaptic Ca2+ signal increased but remained localized to the postsynaptic membrane. In addition, we showed that the plasma membrane Ca2+-ATPase (PMCA) played a role in extruding Ca2+ from the postsynaptic region of the muscle. Drosophila melanogaster has a single PMCA gene, predicted to give rise to various isoforms by alternative splicing. Using RT-PCR, we detected the expression of multiple transcripts in muscle and nervous tissues; the physiological significance of the same is yet to be determined.


2000 ◽  
Vol 83 (1) ◽  
pp. 616-620 ◽  
Author(s):  
Kenneth R. Tovar ◽  
Kathleen Sprouffske ◽  
Gary L. Westbrook

The N-methyl-d-aspartate (NMDA) receptor has been implicated in the formation of synaptic connections. To investigate the role of the ε2 (NR2B) NMDA receptor subunit, which is prominently expressed during early development, we used neurons from mice lacking this subunit. Although ε2−/− mice die soon after birth, we examined whether NMDA receptor targeting to the postsynaptic membrane was dependent on the ε2 subunit by rescuing hippocampal neurons from these mice and studying them in autaptic cultures. In voltage-clamp recordings, excitatory postsynaptic currents (EPSCs) from ε2−/− neurons expressed an NMDA receptor–mediated EPSC that was apparent as soon as synaptic activity developed. However, compared with wild-type neurons, NMDA receptor–mediated EPSC deactivation kinetics were much faster and were less sensitive to glycine, but were blocked by Mg2+ or AP5. Whole cell currents from ε2−/− neurons were also more sensitive to block by low concentrations of Zn2+ and much less sensitive to the ε2-specific antagonist ifenprodil than wild-type currents. The rapid NMDA receptor–mediated EPSC deactivation kinetics and the pharmacological profile from ε2−/−neurons are consistent with the expression of ζ1/ε1 diheteromeric receptors in excitatory hippocampal neurons from mice lacking the ε2 subunit. Thus ε1 can substitute for the ε2 subunit at synapses and ε2 is not required for targeting of NMDA receptors to the postsynaptic membrane.


2018 ◽  
Vol 115 (41) ◽  
pp. E9717-E9726 ◽  
Author(s):  
Hourinaz Behesti ◽  
Taylor R. Fore ◽  
Peter Wu ◽  
Zachi Horn ◽  
Mary Leppert ◽  
...  

Surface protein dynamics dictate synaptic connectivity and function in neuronal circuits. ASTN2, a gene disrupted by copy number variations (CNVs) in neurodevelopmental disorders, including autism spectrum, was previously shown to regulate the surface expression of ASTN1 in glial-guided neuronal migration. Here, we demonstrate that ASTN2 binds to and regulates the surface expression of multiple synaptic proteins in postmigratory neurons by endocytosis, resulting in modulation of synaptic activity. In cerebellar Purkinje cells (PCs), by immunogold electron microscopy, ASTN2 localizes primarily to endocytic and autophagocytic vesicles in the cell soma and in subsets of dendritic spines. Overexpression of ASTN2 in PCs, but not of ASTN2 lacking the FNIII domain, recurrently disrupted by CNVs in patients, including in a family presented here, increases inhibitory and excitatory postsynaptic activity and reduces levels of ASTN2 binding partners. Our data suggest a fundamental role for ASTN2 in dynamic regulation of surface proteins by endocytic trafficking and protein degradation.


Sign in / Sign up

Export Citation Format

Share Document