Computational and biochemical analyses reveal that cofilin-2 self assembles into amyloid-like structures and promotes the aggregation of other proteinaceous species: Pathogenic relevance to myopathies

2021 ◽  
Author(s):  
Vibha Kaushik ◽  
Eva Maria Hanschmann ◽  
Daniela Bruennert ◽  
Kumari Prerna ◽  
Bibin G Anand ◽  
...  

Cofilin-2 is a member of the ADF/cofilin family, expressed extensively in adult muscle cells and involved in muscle maintenance and regeneration. Phosphorylated cofilin-2 is found in pre-fibrillar aggregates formed during idiopathic dilated cardiomyopathy. A recent study shows that phosphorylated cofilin-2, under oxidative distress, forms fibrillar aggregates. However, it remains unknown if cofilin-2 holds an innate propensity to form amyloid-like structures. In the present study, we employed various computational and biochemical techniques to explore the amyloid-forming potential of cofilin-2. We report that cofilin-2 possesses aggregation-prone regions (APRs), and these APRs get exposed to the surface, become solvent-accessible, and are involved in the intermolecular interactions during dimerization, an early stage of aggregation. Furthermore, the cofilin-2 amyloids, formed under physiological conditions, are capable of cross-seeding other monomeric globular proteins and amino acids, thus promoting their aggregation. We further show that Cys-39 and Cys-80 are critical in maintaining the thermodynamic stability of cofilin-2. The destabilizing effect of oxidation at Cys-39 but not that at Cys-80 is mitigated by Ser-3 phosphorylation. Cysteine oxidation leads to partial unfolding and loss of structure, suggesting that cysteine oxidation further induces early events of cofilin-2 aggregation. Overall, our results pose a possibility that cofilin-2 amyloidogenesis might be involved in the pathophysiology of diseases, such as myopathies. We propose that the exposure of APRs to the surface could provide mechanistic insight into the higher-order aggregation and amyloidogenesis of cofilin-2. Moreover, the cross-seeding activity of cofilin-2 amyloids hints towards its involvement in the hetero-aggregation in various amyloid-linked diseases.

Delirium is a common serious complication in dementia that is associated with poor prognosis and a high burden on caregivers and healthcare professionals. Appropriate care is therefore important at an early stage for patients with delirium superimposed on dementia To gain insight into the care of six patients with delirium superimposed on dementia, 19 semi-structured interviews were conducted focused on the experiences of caregivers and professionals. The interviews revealed four themes that appeared to play a role: 1. experiences with and views on behavioral problems of these patients, 2. recognition and diagnosis of delirium in dementia, 3. views on good care and 4. organizational aspects. Knowledge gaps about delirium in dementia, as well as ethical considerations, play an important role in organizing timely and adequate care for patients with delirium superimposed on dementia.


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20961-20969
Author(s):  
Yunqing He ◽  
Wanli Nie ◽  
Ying Xue ◽  
Qishan Hu

Hydrosilylation or amination products? It depends on water amount and nucleophiles like excess water or produced/added amines.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 106
Author(s):  
Joana N. Martins ◽  
João Carlos Lima ◽  
Nuno Basílio

To this day, the recognition and high affinity binding of biomolecules in water by synthetic receptors remains challenging, while the necessity for systems for their sensing, transport and modulation persists. This problematic is prevalent for the recognition of peptides, which not only have key roles in many biochemical pathways, as well as having pharmacological and biotechnological applications, but also frequently serve as models for the study of proteins. Taking inspiration in nature and on the interactions that occur between several receptors and peptide sequences, many researchers have developed and applied a variety of different synthetic receptors, as is the case of macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular receptors, which show great promise for the selective recognition of these biomolecules in physiological conditions. We decided to focus preferentially on small synthetic receptors (leaving out of this review high molecular weight polymeric systems) for which more detailed and accurate molecular level information regarding the main structural and thermodynamic features of the receptor biomolecule assemblies is available.


2021 ◽  
Vol 154 (12) ◽  
pp. 124313
Author(s):  
L. M. Hunnisett ◽  
P. F. Kelly ◽  
S. Bleay ◽  
F. Plasser ◽  
R. King ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document