scholarly journals Public T-Cell Receptors (TCRs) Revisited by Analysis of the Magnitude of Identical and Highly-Similar TCRs in Virus-Specific T-Cell Repertoires of Healthy Individuals

2021 ◽  
Author(s):  
Wesley Huisman ◽  
Lois Hageman ◽  
Didier A.T. Leboux ◽  
Alexandra Khmelevskaya ◽  
Grigory A. Efimov ◽  
...  

Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 antigens of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 867
Author(s):  
Ling Wu ◽  
Joanna Brzostek ◽  
Shvetha Sankaran ◽  
Qianru Wei ◽  
Jiawei Yap ◽  
...  

Chimeric antigen receptor T cells (CAR-T) utilize T cell receptor (TCR) signaling cascades and the recognition functions of antibodies. This allows T cells, normally restricted by the major histocompatibility complex (MHC), to be redirected to target cells by their surface antigens, such as tumor associated antigens (TAAs). CAR-T technology has achieved significant successes in treatment of certain cancers, primarily liquid cancers. Nonetheless, many challenges hinder development of this therapy, such as cytokine release syndrome (CRS) and the efficacy of CAR-T treatments for solid tumors. These challenges show our inadequate understanding of this technology, particularly regarding CAR signaling, which has been less studied. To dissect CAR signaling, we designed a CAR that targets an epitope from latent membrane protein 2 A (LMP2 A) of the Epstein–Barr virus (EBV) presented on HLA*A02:01. Because of this, CAR and TCR signaling can be compared directly, allowing us to study the involvement of other signaling molecules, such as coreceptors. This comparison revealed that CAR was sufficient to bind monomeric antigens due to its high affinity but required oligomeric antigens for its activation. CAR sustained the transduced signal significantly longer, but at a lower magnitude, than did TCR. CD8 coreceptor was recruited to the CAR synapse but played a negligible role in signaling, unlike for TCR signaling. The distinct CAR signaling processes could provide explanations for clinical behavior of CAR-T therapy and suggest ways to improve the technology.


2006 ◽  
Vol 203 (4) ◽  
pp. 897-906 ◽  
Author(s):  
Megan MacLeod ◽  
Mark J. Kwakkenbos ◽  
Alison Crawford ◽  
Sheila Brown ◽  
Brigitta Stockinger ◽  
...  

Secondary T cell responses are enhanced because of an expansion in numbers of antigen-specific (memory) cells. Using major histocompatibility complex class II tetramers we have tracked peptide-specific endogenous (non–T cell receptor transgenic) CD4 memory T cells in normal and in costimulation-deficient mice. CD4 memory T cells were detectable after immunization for more than 200 days, although decay was apparent. Memory cells generated in CD40 knockout mice by immunization with peptide-pulsed wild-type dendritic cells survived in the absence of CD40 and proliferated when boosted with peptide (plus adjuvant) in a CD40-independent fashion. However, differentiation of the memory cells into cytokine-producing effector cells did not occur in the absence of CD40. The data indicate that memory cells can be generated without passing through the effector cell stage.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1408-1416 ◽  
Author(s):  
Elise Landais ◽  
Xavier Saulquin ◽  
Emmanuel Scotet ◽  
Lydie Trautmann ◽  
Marie-Alix Peyrat ◽  
...  

Abstract Due to their low frequency, CD4 T-cell responses to Epstein-Barr virus (EBV) lytic antigens are, so far, poorly characterized. Human peptide major histocompatibility complex (MHC) class II multimers provide a means to detect and characterize such rare T cells. Along a screening of T-cell responses to lytic or latent EBV antigens within peripheral blood leukocyte (PBL)– or synovial-derived CD4 T-cell lines, we identified an human leukocyte antigen–DR*0401 (HLA-DR*0401)–restricted epitope derived from BHRF1 (BamHI fragment H rightward open reading frame 1), a viral protein produced during the early stages of the lytic cycle. We show here that T-cell responses to this particular BHRF1 epitope are shared by most EBV-infected DR*0401+ individuals, as BHRF1-specific CD4 T cells could be sorted out from all the DRB*0401 T-cell lines analyzed, using magnetic beads coated with recombinant BHRF1/DR*0401 complexes. Sorting with these peptide MHC class II multimers was very efficient, as the yield of recovery of BHRF1-specific T cells was nearly 100%. Functional analysis of a large number of clones responding to BHRF1/DR*0401 demonstrated their cytolytic action against autologous and allogeneic DR*0401+ EBV-transformed B-lymphoblastoid cell lines (B-LCLs), with 40% to 80% killing efficiency and potent interferon γ production, thus suggesting that this CD4 T-cell population contributes to the control of EBV replication. B-LCL lysis by these T-cell clones was DR*0401 dependent, EBV dependent, and was not merely due to bystander killing. Taken together, these data provide the first demonstration that a lytic antigen can induce a direct cytolytic response against EBV-infected cells.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 5071-5080 ◽  
Author(s):  
Phillip Scheinberg ◽  
Jan J. Melenhorst ◽  
Jason M. Brenchley ◽  
Brenna J. Hill ◽  
Nancy F. Hensel ◽  
...  

Abstract The successful reconstitution of adaptive immunity to human cytomegalovirus (CMV) in hematopoietic stem cell transplantation (HSCT) recipients is central to the reduction of viral reactivation-related morbidity and mortality. Here, we characterized the magnitude, specificity, phenotype, function, and clonotypic composition of CMV-specific T-cell responses in 18 donor-recipient pairs both before and after HSCT. The principal findings were: (1) the specificity of CMV-specific T-cell responses in the recipient after HSCT mirrors that in the donor; (2) the maintenance of these targeting patterns reflects the transfer of epitope-specific T-cell clonotypes from donor to recipient; (3) less differentiated CD27+CD57− CMV-specific memory T cells are more likely to persist in the recipient after HSCT compared with more terminally differentiated CD27− CD57+ CMV-specific memory T cells; (4) the presence of greater numbers of less differentiated CD8+ CMV-specific T cells in the donor appears to confer protection against viral reactivation in the recipient after HSCT; and (5) CMV-specific T cells acquire a more differentiated phenotype and a restricted functional profile after HSCT. Overall, these findings define the immunologic factors that influence the successful adoptive transfer of antigen-specific T-cell immunity during HSCT, which enables the identification of recipients at particular risk of CMV reactivation after HSCT.


2009 ◽  
Vol 32 (3) ◽  
pp. 310-321 ◽  
Author(s):  
Silke Landmeier ◽  
Bianca Altvater ◽  
Sibylle Pscherer ◽  
Heribert Juergens ◽  
Lena Varnholt ◽  
...  

2000 ◽  
Vol 355 (1400) ◽  
pp. 1007-1011 ◽  
Author(s):  
Andrew J. McMichael ◽  
Margaret Callan ◽  
Victor Appay ◽  
Tom Hanke ◽  
Graham Ogg ◽  
...  

Recent advances in measuring T–cell responses to viruses have led to new insights into how these T cells respond. In the acute infection there are massive CD8 + T–cell responses to both Epstein–Barr virus (EBV) and to human immunodeficiency virus (HIV). Many of these T cells are effector cells and only a minority appear to be capable of maintaining immunological memory. In persistent virus infections, high levels of antigen–specific effector cells persist. If virus does not persist, the effectors fade in number but memory is maintained and is primed to react rapidly to a new challenge. A vaccine that stimulates only T–cell responses may protect when these memory cells respond rapidly enough to generate high numbers of effectors before the infecting virus becomes established.


2016 ◽  
Vol 113 (42) ◽  
pp. E6467-E6475 ◽  
Author(s):  
Manuel Albanese ◽  
Takanobu Tagawa ◽  
Mickaël Bouvet ◽  
Liridona Maliqi ◽  
Dominik Lutter ◽  
...  

Infection with Epstein–Barr virus (EBV) affects most humans worldwide and persists life-long in the presence of robust virus-specific T-cell responses. In both immunocompromised and some immunocompetent people, EBV causes several cancers and lymphoproliferative diseases. EBV transforms B cells in vitro and encodes at least 44 microRNAs (miRNAs), most of which are expressed in EBV-transformed B cells, but their functions are largely unknown. Recently, we showed that EBV miRNAs inhibit CD4+T-cell responses to infected B cells by targeting IL-12, MHC class II, and lysosomal proteases. Here we investigated whether EBV miRNAs also counteract surveillance by CD8+T cells. We have found that EBV miRNAs strongly inhibit recognition and killing of infected B cells by EBV-specific CD8+T cells through multiple mechanisms. EBV miRNAs directly target the peptide transporter subunit TAP2 and reduce levels of the TAP1 subunit, MHC class I molecules, and EBNA1, a protein expressed in most forms of EBV latency and a target of EBV-specific CD8+T cells. Moreover, miRNA-mediated down-regulation of the cytokine IL-12 decreases the recognition of infected cells by EBV-specific CD8+T cells. Thus, EBV miRNAs use multiple, distinct pathways, allowing the virus to evade surveillance not only by CD4+but also by antiviral CD8+T cells.


2018 ◽  
Vol 115 (4) ◽  
pp. E686-E695 ◽  
Author(s):  
Il-Kyu Choi ◽  
Zhe Wang ◽  
Qiang Ke ◽  
Min Hong ◽  
Yu Qian ◽  
...  

The B-lymphotropic Epstein–Barr virus (EBV), pandemic in humans, is rapidly controlled on initial infection by T cell surveillance; thereafter, the virus establishes a lifelong latent infection in the host. If surveillance fails, fatal lymphoproliferation and lymphomagenesis ensue. The initial T cell response consists of predominantly CD8+ cytotoxic T cells and a smaller expansion of CD4+ cells. A major approach to treating EBV-associated lymphomas is adoptive transfer of autologous or allogeneic T cells that are stimulated/expanded on EBV-transformed B cells. Strikingly, the clinical response correlates with the frequency of CD4 cells in the infused T cells. Although in vitro studies suggested that EBV-specific CD4 cells develop cytotoxicity, they have not been comprehensively characterized and the molecular mechanism underlying their formation remains unknown. Our recent work, using a transgenic approach in mice, has revealed a central role for the EBV signaling molecule LMP1 in immune surveillance and transformation of EBV-infected B cells. The mouse model offers a unique tool for uncovering basic features of EBV immunity. Here, we show that LMP1 expression in B cells induces potent cytotoxic CD4 and CD8 T cell responses, by enhancing antigen presentation and costimulation by CD70, OX40 ligand, and 4-1BB ligand. Our data further suggest that cytotoxic CD4 cells hold superior therapeutic value for LMP1 (EBV)-driven lymphomas. These findings provide insights into EBV immunity, demonstrating that LMP1 signaling alone is sufficient to induce a prominent cytotoxic CD4 response, and suggest strategies for immunotherapy in EBV-related and other cancers.


Sign in / Sign up

Export Citation Format

Share Document