scholarly journals CD4 memory T cells survive and proliferate but fail to differentiate in the absence of CD40

2006 ◽  
Vol 203 (4) ◽  
pp. 897-906 ◽  
Author(s):  
Megan MacLeod ◽  
Mark J. Kwakkenbos ◽  
Alison Crawford ◽  
Sheila Brown ◽  
Brigitta Stockinger ◽  
...  

Secondary T cell responses are enhanced because of an expansion in numbers of antigen-specific (memory) cells. Using major histocompatibility complex class II tetramers we have tracked peptide-specific endogenous (non–T cell receptor transgenic) CD4 memory T cells in normal and in costimulation-deficient mice. CD4 memory T cells were detectable after immunization for more than 200 days, although decay was apparent. Memory cells generated in CD40 knockout mice by immunization with peptide-pulsed wild-type dendritic cells survived in the absence of CD40 and proliferated when boosted with peptide (plus adjuvant) in a CD40-independent fashion. However, differentiation of the memory cells into cytokine-producing effector cells did not occur in the absence of CD40. The data indicate that memory cells can be generated without passing through the effector cell stage.

2003 ◽  
Vol 198 (12) ◽  
pp. 1909-1922 ◽  
Author(s):  
Souheil-Antoine Younes ◽  
Bader Yassine-Diab ◽  
Alain R. Dumont ◽  
Mohamed-Rachid Boulassel ◽  
Zvi Grossman ◽  
...  

CD4+ T cell responses are associated with disease control in chronic viral infections. We analyzed human immunodeficiency virus (HIV)-specific responses in ten aviremic and eight viremic patients treated during primary HIV-1 infection and for up to 6 yr thereafter. Using a highly sensitive 5-(and-6)-carboxyfluorescein diacetate-succinimidyl ester–based proliferation assay, we observed that proliferative Gag and Nef peptide-specific CD4+ T cell responses were 30-fold higher in the aviremic patients. Two subsets of HIV-specific memory CD4+ T cells were identified in aviremic patients, CD45RA− CCR7+ central memory cells (Tcm) producing exclusively interleukin (IL)-2, and CD45RA− CCR7− effector memory cells (Tem) that produced both IL-2 and interferon (IFN)-γ. In contrast, in viremic, therapy-failing patients, we found significant frequencies of Tem that unexpectedly produced exclusively IFN-γ. Longitudinal analysis of HIV epitope–specific CD4+ T cells revealed that only cells that had the capacity to produce IL-2 persisted as long-term memory cells. In viremic patients the presence of IFN-γ–producing cells was restricted to periods of elevated viremia. These findings suggest that long-term CD4+ T cell memory depends on IL-2–producing CD4+ T cells and that IFN-γ only–producing cells are short lived. Our data favor a model whereby competent HIV-specific Tcm continuously arise in small numbers but under persistent antigenemia are rapidly induced to differentiate into IFN-γ only–producing cells that lack self-renewal capacity.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Nathan Schoettler ◽  
Cara L Hrusch ◽  
Kelly M Blaine ◽  
Anne I Sperling ◽  
Carole Ober

Abstract Antigen-specific memory T cells persist for years after exposure to a pathogen and provide effective recall responses. Many memory T cell subsets have been identified and differ in abundance throughout tissues. This study focused on CD4 and CD8 memory T cells from paired human lung and lung draining lymph node (LDLN) samples and identified substantial differences in the transcriptional landscape of these subsets, including higher expression of an array of innate immune receptors in lung T cells which were further validated by flow cytometry. Using T cell receptor analysis, we determined the clonal overlap between memory T cell subsets within the lung and within the LDLN, and this was greater than the clonal overlap observed between memory T cell subsets compared across tissues. Our results suggest that lung and LDLN memory T cells originate from different precursor pools, recognize distinct antigens and likely have separate roles in immune responses.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 5071-5080 ◽  
Author(s):  
Phillip Scheinberg ◽  
Jan J. Melenhorst ◽  
Jason M. Brenchley ◽  
Brenna J. Hill ◽  
Nancy F. Hensel ◽  
...  

Abstract The successful reconstitution of adaptive immunity to human cytomegalovirus (CMV) in hematopoietic stem cell transplantation (HSCT) recipients is central to the reduction of viral reactivation-related morbidity and mortality. Here, we characterized the magnitude, specificity, phenotype, function, and clonotypic composition of CMV-specific T-cell responses in 18 donor-recipient pairs both before and after HSCT. The principal findings were: (1) the specificity of CMV-specific T-cell responses in the recipient after HSCT mirrors that in the donor; (2) the maintenance of these targeting patterns reflects the transfer of epitope-specific T-cell clonotypes from donor to recipient; (3) less differentiated CD27+CD57− CMV-specific memory T cells are more likely to persist in the recipient after HSCT compared with more terminally differentiated CD27− CD57+ CMV-specific memory T cells; (4) the presence of greater numbers of less differentiated CD8+ CMV-specific T cells in the donor appears to confer protection against viral reactivation in the recipient after HSCT; and (5) CMV-specific T cells acquire a more differentiated phenotype and a restricted functional profile after HSCT. Overall, these findings define the immunologic factors that influence the successful adoptive transfer of antigen-specific T-cell immunity during HSCT, which enables the identification of recipients at particular risk of CMV reactivation after HSCT.


2021 ◽  
Author(s):  
Jae Hyung Jung ◽  
Min-Seok Rha ◽  
Moa Sa ◽  
Hee Kyoung Choi ◽  
Ji Hoon Jeon ◽  
...  

AbstractMemory T cells contribute to rapid viral clearance during re-infection, but the longevity and differentiation of SARS-CoV-2-specific memory T cells remain unclear. We conducted direct ex vivo assays to evaluate SARS-CoV-2-specific CD4+ and CD8+ T cell responses in COVID-19 convalescents up to 254 days post-symptom onset (DPSO). Here, we report that memory T cell responses were maintained during the study period. In particular, we observed sustained polyfunctionality and proliferation capacity of SARS-CoV-2-specific T cells. Among SARS-CoV-2-specific CD4+ and CD8+ T cells detected by activation-induced markers, the proportion of stem cell-like memory T (TSCM) cells increased, peaking at approximately 120 DPSO. Development of TSCM cells was confirmed by SARS-CoV-2-specific MHC-I multimer staining. Considering the self-renewal capacity and multipotency of TSCM cells, our data suggest that SARS-CoV-2-specific T cells are long-lasting after recovery from COVID-19. The current study provides insight for establishing an effective vaccination program and epidemiological measurement.


2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Gaëlle Breton ◽  
Pilar Mendoza ◽  
Thomas Hägglöf ◽  
Thiago Y. Oliveira ◽  
Dennis Schaefer-Babajew ◽  
...  

SARS-CoV-2 is responsible for an ongoing pandemic that has affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals, we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 mo after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen–specific memory that could contribute to rapid recall responses. Recovered individuals also show enduring alterations in relative overall numbers of CD4+ and CD8+ memory T cells, including expression of activation/exhaustion markers, and cell division.


2021 ◽  
Author(s):  
Wesley Huisman ◽  
Lois Hageman ◽  
Didier A.T. Leboux ◽  
Alexandra Khmelevskaya ◽  
Grigory A. Efimov ◽  
...  

Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 antigens of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.


Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 942-949 ◽  
Author(s):  
Kyle K. Payne ◽  
Jessica A. Mine ◽  
Subir Biswas ◽  
Ricardo A. Chaurio ◽  
Alfredo Perales-Puchalt ◽  
...  

Gamma delta (γδ) T cells infiltrate most human tumors, but current immunotherapies fail to exploit their in situ major histocompatibility complex–independent tumoricidal potential. Activation of γδ T cells can be elicited by butyrophilin and butyrophilin-like molecules that are structurally similar to the immunosuppressive B7 family members, yet how they regulate and coordinate αβ and γδ T cell responses remains unknown. Here, we report that the butyrophilin BTN3A1 inhibits tumor-reactive αβ T cell receptor activation by preventing segregation of N-glycosylated CD45 from the immune synapse. Notably, CD277-specific antibodies elicit coordinated restoration of αβ T cell effector activity and BTN2A1-dependent γδ lymphocyte cytotoxicity against BTN3A1+ cancer cells, abrogating malignant progression. Targeting BTN3A1 therefore orchestrates cooperative killing of established tumors by αβ and γδ T cells and may present a treatment strategy for tumors resistant to existing immunotherapies.


2018 ◽  
Author(s):  
Dafni A. Glinos ◽  
Blagoje Soskic ◽  
Luke Jostins ◽  
David M. Sansom ◽  
Gosia Trynka

SummaryT cell activation is a critical driver of immune response and if uncontrolled, it can result in failure to respond to infection or in excessive inflammation and autoimmunity. CD28 costimulatory pathway is an essential regulator of CD4 T cell responses. To deconvolute how T cell receptor (TCR) and CD28 orchestrate activation of human CD4 T cells we stimulated cells using varying intensities of TCR and CD28 signals followed by gene expression profiling. We demonstrate that T-helper differentiation and cytokine expression are controlled by CD28. Strikingly, cell cycle and cell division are sensitive to CD28 in memory cells, but under TCR control in naive cells, in contrast to the paradigm that memory cells are CD28-independent. Using a combination of chromatin accessibility and enhancer profiling, we observe that IRFs and Blimp-1 (PRDM1) motifs are enriched in naive and memory T cells in response to TCR. In contrast, memory cells initiate AP1 transcriptional regulation only when both TCR and CD28 are engaged, implicating CD28 as an amplifier of transcriptional programmes in memory cells. Lastly, we show that CD28-sensitive genes are enriched in autoimmune disease loci, pointing towards the role of memory cells and the regulation of T cell activation through CD28 in autoimmune disease development. This study provides important insights into the differential role of CD28 in naive and memory T cell responses and offers a new platform for design and interpretation of costimulatory based therapies.One-sentence summaryGenomic profiling of CD4 T cell activation reveals a sensitivity switch from TCR in naive to CD28 in memory cells.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1490
Author(s):  
Victoria Matyushenko ◽  
Irina Isakova-Sivak ◽  
Igor Kudryavtsev ◽  
Arina Goshina ◽  
Anna Chistyakova ◽  
...  

Background: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered. Methods: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins. Here, we determined the level of CD4+ and CD8+ memory T-cell responses in COVID-19 convalescents by stimulating PBMCs collected 1 to 6 months after recovery with sucrose gradient-purified live SARS-CoV-2. IFNγ production by the central and effector memory helper and cytotoxic T cells was assessed by intracellular cytokine staining assay and flow cytometry. Results: Stimulation of PBMCs with live SARS-CoV-2 revealed IFNγ-producing T-helper effector memory cells with CD4+CD45RA−CCR7− phenotype, which persisted in circulation for up to 6 month after COVID-19. In contrast, SARS-CoV-2-specific IFNγ-secreting cytotoxic effector memory T cells were found at significant levels only shortly after the disease, but rapidly decreased over time. Conclusion: The stimulation of immune cells with live SARS-CoV-2 revealed a rapid decline in the pool of effector memory CD8+, but not CD4+, T cells after recovery from COVID-19. These data provide additional information on the development and persistence of cellular immune responses after natural infection, and can inform further development of T cell-based SARS-CoV-2 vaccines.


Sign in / Sign up

Export Citation Format

Share Document