scholarly journals GBS and a newly developed mRNA-GBS approach to link population genetic and transcriptome analyses reveal pattern differences between sites and treatments in red clover (Trifolium pratense L.)

2021 ◽  
Author(s):  
B Gemeinholzer ◽  
O Rupp ◽  
A Becker ◽  
M. Strickert ◽  
C-M Müller

AbstractThe important worldwide forage crop red clover (Trifolium pratense L.) is widely cultivated as cattle feed and for soil improvement. Wild populations and landraces have great natural diversity that could be used to improve cultivated red clover. However, to date, there is still insufficient knowledge about the natural genetic and phenotypic diversity of the species. Here, we developed a low-cost transcriptome analysis (mRNA-GBS) with reduced complexity and compared the results with population genetic (GBS) and previously published mRNA-Seq data, to assess whether analysis of intraspecific variation within and between populations and transcriptome responses is possible simultaneously. The mRNA-GBS approach was successful. SNP analyses from the mRNA-GBS approach revealed comparable patterns to the GBS results, but it was not possible to link transcriptome analyses with reduced complexity and sequencing depth to previously published greenhouse and field expression studies. The use of short sequences upstream of the poly(A) tail of mRNA to reduce complexity are promising approaches that combine population genetics and expression profiling to analyze many individuals with trait differences simultaneously and cost-effectively, even in non-model species. Our mRNA-GBS approach revealed too many additional short mRNA sequences, hampering sequence alignment depth and SNP recovery. Optimizations are being discussed. Nevertheless, our study design across different regions in Germany was also challenging as the use of differential expression analyses with reduced complexity, in which mRNA is fragmented at specific sites rather than randomly, is most likely counteracted under natural conditions by highly complex plant reactions at low sequencing depth.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1286
Author(s):  
Anna Marzec-Grządziel ◽  
Anna Gałązka ◽  
Monika Marek-Kozaczuk ◽  
Anna Skorupska

The aim of this study was to analyse the genetic and phenotypic differentiation of bacteria isolated from root nodules of Trifolium rubens, a rare clover species. The symbiotic compatibility of selected isolates was investigated using two agronomically important plants, red clover (Trifolium pratense L.) and pea (Pisum sativum L.). A high genetic diversity of analysed strains was shown using the Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) method. Most of the strains showed a high similarity to R. leguminosarum in the 16S rRNA sequence. Two strains were identified as Agrobacterium spp. There was a strong positive correlation between fresh clover weight and the number of root nodules and a statistically significant increase in the number of the root nodules in selected strains compared to the negative control. Phenotypic tests and BIOLOG analysis showed the ability of the analysed strains to grow in different experimental conditions (pH = 6–10, 0.5–3% NaCl, different carbon and nitrogen sources), which makes them suitable for application as an agronomically important factor.


Crop Science ◽  
1965 ◽  
Vol 5 (5) ◽  
pp. 425-428 ◽  
Author(s):  
R. J. Bula ◽  
R. G. May ◽  
C. S. Garrison ◽  
C. M. Rincker ◽  
J. G. Dean

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 722
Author(s):  
Renata Dobosz ◽  
Roman Krawczyk

The northern root-knot nematode, Meloidogyne hapla, is a major pest of many crop species. The objective of the study was to determine how M. hapla population dynamics is affected by two precrops, i.e., Trifolium pratense and Medicago sativa, in three crop durations: one, two and three years of continuous cultivation. Moreover, we set ourselves the task of evaluating the effect of the legume precrop soil on the growth of the succeeding tomato plant (Solanum lycopersicum) and on the nematode population. The experiment was performed outdoors in pots with naturally infected soil. Both precrop species investigated were found to modify the J2 nematode population density in the soil. The galls and nematode females with egg masses were observed on the roots of both studied plant species at the end of each growing season. They appeared to be more abundant on the red clover roots than on those of the alfalfa. The obtained data indicate that the spring soil sampling is more appropriate for the estimation of the M. hapla population density in the red clover precrop soil. The legume precrop soil had a limiting effect on tomato growth and fruit yield. The nematode population negatively influenced tomato growth. The experiment revealed that tomato plants could be planted in alfalfa precrop soil following at least three years of continuous alfalfa cultivation. The same cannot be said of the cultivation of red clover as a precrop for tomatoes.


2009 ◽  
Vol 4 (6) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Aldo Tava ◽  
Daniele Ramella ◽  
Maris Grecchi ◽  
Paolo Aceto ◽  
Renato Paoletti ◽  
...  

The composition of the volatile fraction of two important forage legumes from Italian sub-alpine N.E. pastureland, namely Trifolium pratense L. subsp. pratense (red clover) and T. repens subsp. repens (white clover) were investigated. The volatile oil was obtained from the fresh aerial parts by steam distillation and analyzed by GC/FID and GC/MS. The oil yield was 0.018 and 0.021% (weight/fresh weight basis) for T. pratense and T. repens, respectively. Several classes of compounds were found in both the oils, including alcohols, aldehydes, ketones, terpenes, esters, hydrocarbons, phenolics and acids. Qualitative and quantitative differences were found.


2021 ◽  
Vol 11 (10) ◽  
pp. 4676
Author(s):  
Anatolii Ivankov ◽  
Rasa Zukiene ◽  
Zita Nauciene ◽  
Laima Degutyte-Fomins ◽  
Irina Filatova ◽  
...  

This study aimed to estimate the effects of cold plasma (CP) and electromagnetic field (EMF) treatment of red clover (Trifolium pratense) seeds with different coat colors on germination kinetics, the content of seed phytohormones, and the growth of seedlings. Seeds of red clover cultivar ‘Arimaiciai’ were treated with radio-frequency EMF or capacitively coupled low-pressure CP for different durations. There were no differences in germination kinetics between yellow, brown, and dark purple seeds in control, but the germination rate of seeds treated with CP and EMF depended on seed color: The germination of yellow seeds was stimulated stronger compared to dark purple and brown seeds, and EMF did not stimulate germination in brown seeds. The content of phytohormones in control seeds and the shift in their amount induced by seed treatments were also strongly dependent on seed color. No relationship was found between the effect on germination kinetics and changes in phytohormone levels. In the control, seedlings growing from the yellow seeds were heavier, and the number of root nodules was 12.5 times larger compared to seedlings of dark purple seeds. Seed treatments with CP and EMF significantly increased the number of root nodules, and this effect was stronger in seedlings from dark purple seeds compared to those from yellow seeds.


Crop Science ◽  
1968 ◽  
Vol 8 (4) ◽  
pp. 451-454 ◽  
Author(s):  
Norman L. Taylor ◽  
W. A. Kendall ◽  
W. H. Stroube

1977 ◽  
Vol 55 (15) ◽  
pp. 2122-2136 ◽  
Author(s):  
H. W. J. Ragetli ◽  
M. Elder

An unknown virus was isolated from a young red clover plant (Trifolium pratense) with a bright yellow leaf mottle and subsequently was isolated from five other field clover plants with milder symptoms growing in three locations. In the laboratory, red clover became systemically infected by the virus only when the plants were kept between 10 and 16 °C after inoculation, and symptoms were mild. Crimson clover (T. incarnatum) was readily invaded at room temperature, and survivors of the initial shock reaction were severely mottled. White clover (T. repens) and Alsike clover (T. hybridum) did not become systemically infected under either temperature regime. The symptom common to all four species, necrotic spots in the inoculated primary leaves, suggested the name clover primary leaf necrosis virus. Among the nine leguminous and six non-leguminous host species, bean (Phaseolus vulgaris) was best suited for virus propagation, and cucumber (Cucumis sativus) was best suited for quantitative assay and detection.The virus was characterized by a single sedimenting species of spherical nucleoprotein particles with a sedimentation value, S20.w, of 136–137, an average diameter of 36 nm, and a specific extinction, E260 nm1%, 1 cm, of 58.15. The nucleic acid was of the ribose type and constituted 21% of the weight of the virion. Activity was lost from crude juice at 65 °C and from purified suspensions at 85 °C, with about 10% activity persisting between 60–70 °C. Two electrophoretic components were isolated from purified preparations. They induced identical symptoms in three hosts, but one replicated both components in bean and had more antigenic determinants than the other, which replicated itself only. The virus was weakly antigenic inducing an antiserum with titer of 128. Some of its in vitro properties were similar to those of carnation ringspot virus, but the two viruses were serologically unrelated. Nor was this virus serologically related to any of 15 other spherical viruses tested.


Sign in / Sign up

Export Citation Format

Share Document