scholarly journals A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables

2021 ◽  
Author(s):  
Julian Hecker ◽  
Dmitry Prokopenko ◽  
Matthew Moll ◽  
Sanghun Lee ◽  
Wonji Kim ◽  
...  

AbstractThe identification and understanding of gene-environment interactions can provide insights into the pathways and mechanisms underlying complex diseases. However, testing for gene-environment interaction remains a challenge since statistical power is often limited, the specification of environmental effects is nontrivial, and such misspecifications can lead to false positive findings. To address the lack of statistical power, recent methods aim to identify interactions on an aggregated level using, for example, polygenic risk scores. While this strategy increases power to detect interactions, identifying contributing key genes and pathways is difficult based on these global results.Here, we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-environment interaction testing framework for quantitative traits that is based on sample splitting and robust test statistics. RITSS can incorporate multiple genetic variants and/or multiple environmental factors. Using sample splitting, a screening step enables the selection and combination of potential interactions into scores with improved interpretability, based on the user’s unrestricted choices for statistical/machine learning approaches. In the testing step, the application of robust test statistics minimizes the susceptibility of the results to main effect misspecifications.Using extensive simulation studies, we demonstrate that RITSS controls the type 1 error rate in a wide range of scenarios. In an application to lung function phenotypes and human height in the UK Biobank, RITSS identified genome-wide significant interactions with subcomponents of genetic risk scores. While the contributing single variant interactions are moderate, our analysis results indicate interesting interaction patterns that result in strong aggregated signals that provide further insights into gene-environment interaction mechanisms.

Author(s):  
Andrey Ziyatdinov ◽  
Jihye Kim ◽  
Dmitry Prokopenko ◽  
Florian Privé ◽  
Fabien Laporte ◽  
...  

Abstract The effective sample size (ESS) is a metric used to summarize in a single term the amount of correlation in a sample. It is of particular interest when predicting the statistical power of genome-wide association studies (GWAS) based on linear mixed models. Here, we introduce an analytical form of the ESS for mixed-model GWAS of quantitative traits and relate it to empirical estimators recently proposed. Using our framework, we derived approximations of the ESS for analyses of related and unrelated samples and for both marginal genetic and gene-environment interaction tests. We conducted simulations to validate our approximations and to provide a quantitative perspective on the statistical power of various scenarios, including power loss due to family relatedness and power gains due to conditioning on the polygenic signal. Our analyses also demonstrate that the power of gene-environment interaction GWAS in related individuals strongly depends on the family structure and exposure distribution. Finally, we performed a series of mixed-model GWAS on data from the UK Biobank and confirmed the simulation results. We notably found that the expected power drop due to family relatedness in the UK Biobank is negligible.


Author(s):  
David M. Wineroither ◽  
Rudolf Metz

AbstractThis report surveys four approaches that are pivotal to the study of preference formation: (a) the range, validity, and theoretical foundations of explanations of political preferences at the individual and mass levels, (b) the exploration of key objects of preference formation attached to the democratic political process (i.e., voting in competitive elections), (c) the top-down vs. bottom-up character of preference formation as addressed in leader–follower studies, and (d) gene–environment interaction and the explanatory weight of genetic predisposition against the cumulative weight of social experiences.In recent years, our understanding of sites and processes of (individual) political-preference formation has substantially improved. First, this applies to a greater variety of objects that provide fresh insight into the functioning and stability of contemporary democracy. Second, we observe the reaffirmation of pivotal theories and key concepts in adapted form against widespread challenge. This applies to the role played by social stratification, group awareness, and individual-level economic considerations. Most of these findings converge in recognising economics-based explanations. Third, research into gene–environment interplay rapidly increases the number of testable hypotheses and promises to benefit a wide range of approaches already taken and advanced in the study of political-preference formation.


2014 ◽  
Vol 205 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Wouter J. Peyrot ◽  
Yuri Milaneschi ◽  
Abdel Abdellaoui ◽  
Patrick F. Sullivan ◽  
Jouke J. Hottenga ◽  
...  

BackgroundResearch on gene×environment interaction in major depressive disorder (MDD) has thus far primarily focused on candidate genes, although genetic effects are known to be polygenic.AimsTo test whether the effect of polygenic risk scores on MDD is moderated by childhood trauma.MethodThe study sample consisted of 1645 participants with a DSM-IV diagnosis of MDD and 340 screened controls from The Netherlands. Chronic or remitted episodes (severe MDD) were present in 956 participants. The occurrence of childhood trauma was assessed with the Childhood Trauma Interview and the polygenic risk scores were based on genome-wide meta-analysis results from the Psychiatric Genomics Consortium.ResultsThe polygenic risk scores and childhood trauma independently affected MDD risk, and evidence was found for interaction as departure from both multiplicativity and additivity, indicating that the effect of polygenic risk scores on depression is increased in the presence of childhood trauma. The interaction effects were similar in predicting all MDD risk and severe MDD risk, and explained a proportion of variation in MDD risk comparable to the polygenic risk scores themselves.ConclusionsThe interaction effect found between polygenic risk scores and childhood trauma implies that (1) studies on direct genetic effect on MDD gain power by focusing on individuals exposed to childhood trauma, and that (2) individuals with both high polygenic risk scores and exposure to childhood trauma are particularly at risk for developing MDD.


2017 ◽  
Vol 3 ◽  
pp. 351 ◽  
Author(s):  
Sara L. Ackerman ◽  
Katherine Weatherford Darling ◽  
Sandra Soo-Jin Lee ◽  
Robert A. Hiatt ◽  
Janet K. Shim

Biomedical research is increasingly informed by expectations of “translation,” which call for the production of scientific knowledge that can be used to create services and products that improve health outcomes. In this paper, we ask how translation, in particular the idea of social responsibility, is understood and enacted in the post-genomic life sciences. Drawing on theories examining what constitutes “good science,” and interviews with 35 investigators who study the role of gene-environment interactions in the etiology of cancer, diabetes, and cardiovascular disease, we describe the dynamic and unsettled ethics of translational science through which the expected social value of scientific knowledge about complex disease causation is negotiated. To describe how this ethics is formed, we first discuss the politics of knowledge production in interdisciplinary research collectives. Researchers described a commitment to working across disciplines to examine a wide range of possible causes of disease, but they also pointed to persistent disciplinary and ontological divisions that rest on the dominance of molecular conceptions of disease risk. The privileging of molecular-level causation shapes and constrains the kinds of knowledge that can be created about gene-environment interactions. We then turn to scientists’ ideas about how this knowledge should be used, including personalized prevention strategies, targeted therapeutics, and public policy interventions. Consensus about the relative value of these anticipated translations was elusive, and many scientists agreed that gene-environment interaction research is part of a shift in biomedical research away from considering important social, economic, political and historical causes of disease and disease disparities. We conclude by urging more explicit engagement with questions about the ethics of translational science in the post-genomic life sciences. This would include a consideration of who will benefit from emerging scientific knowledge, how benefits will accrue, and the ways in which normative assumptions about the public good come to be embedded in scientific objects and procedures.


BMC Genetics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Anke Hüls ◽  
Ursula Krämer ◽  
Christopher Carlsten ◽  
Tamara Schikowski ◽  
Katja Ickstadt ◽  
...  

2021 ◽  
Author(s):  
Reginald D Smith

Gene-environment interaction is often described by linear phenotypic plasticity but has recently also been expressed as function of the product of genotype and environmental variables. While this model can be fitted in a multiple regression scenario, little has been written on the distribution of the product of breeding values and environment, GE, its expected moments, and the theoretical impact on phenotypic selection. Here we will explore these topics introducing the distribution for GE, its mean and variance, and its expected impact of lowering realized heritability due to is increasing the phenotypic variance.


2015 ◽  
Vol 39 (8) ◽  
pp. 609-618 ◽  
Author(s):  
Shuo Jiao ◽  
Ulrike Peters ◽  
Sonja Berndt ◽  
Stéphane Bézieau ◽  
Hermann Brenner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document