scholarly journals A Non-Canonical Function of Arabidopsis ERECTA Proteins in Gibberellin Signaling

2021 ◽  
Author(s):  
Elzbieta Sarnowska ◽  
Szymon Kubala ◽  
Pawel Cwiek ◽  
Sebastian Sacharowski ◽  
Paulina Oksinska ◽  
...  

AbstractThe Arabidopsis ERECTA family (ERf) of leucine-rich repeat receptor-like kinases (LRR-RLKs), comprising ERECTA (ER), ERECTA-LIKE 1 (ERL1) and ERECTA-LIKE 2 (ERL2), control epidermal patterning, inflorescence architecture, stomata development, and hormonal signaling. Here we show that the er/erl1/erl2 triple mutant exhibits impaired gibberellin (GA) biosynthesis and perception alongside broad transcriptional changes. ERf proteins interact in the nucleus, via kinase domains, with the SWI3B subunit of the SWI/SNF chromatin remodeling complex (CRCs). The er/erl1/erl2 triple mutant exhibits reduced SWI3B protein level and affected nucleosomal chromatin structure. The ER kinase phosphorylates SWI3B in vitro, and the inactivation of all ERf proteins leads to the decreased phosphorylation of SWI3B protein in vivo. Correlation between DELLA overaccumulation and SWI3B proteasomal degradation together with the physical interaction of SWI3B with DELLA proteins explain the lack of RGA accumulation in the GA- and SWI3B-deficient erf mutant plants. Co-localization of ER and SWI3B on GID1 (GIBBERELLIN INSENSITIVE DWARF 1) DELLA target gene promoter regions and abolished SWI3B binding to GID1 promoters in er/erl1/erl2 plants supports the conclusion that ERf-SWI/SNF CRC interaction is important for transcriptional control of GA receptors. Thus, the involvement of ERf proteins in transcriptional control of gene expression, and observed similar features for human HER2 (Epidermal Growth Family Receptor-member), indicate an exciting target for further studies of evolutionarily conserved non-canonical functions of eukaryotic membrane receptors.ONE SENTENCE SUMMARYERECTA leucine-rich receptor-like kinase and SWI3B subunit of SWI/SNF chromatin remodeling complex cooperate in direct transcriptional control of GID1 genes in Arabidopsis.

2001 ◽  
Vol 21 (6) ◽  
pp. 2098-2106 ◽  
Author(s):  
Marnie E. Gelbart ◽  
Thomas Rechsteiner ◽  
Timothy J. Richmond ◽  
Toshio Tsukiyama

ABSTRACT To facilitate the biochemical characterization of chromatin-associated proteins in the budding yeast Saccharomyces cerevisiae, we have developed a system to assemble nucleosomal arrays on immobilized templates using recombinant yeast core histones. This system enabled us to analyze the interaction of Isw2 ATP-dependent chromatin remodeling complex with nucleosomal arrays. We found that Isw2 complex interacts efficiently with both naked DNA and nucleosomal arrays in an ATP-independent manner, suggesting that ATP is required at steps subsequent to this physical interaction. We identified the second subunit of Isw2 complex, encoded by open reading frame YGL 133w (herein named ITC1), and found that both subunits of the complex, Isw2p and Itc1p, are essential for efficient interaction with DNA and nucleosomal arrays. Both subunits are also required for nucleosome-stimulated ATPase activity and chromatin remodeling activity of the complex. Finally, we found that ITC1 is essential for function of Isw2 complex in vivo, since isw2 anditc1 deletion mutants exhibit virtually identical phenotypes. These results demonstrate the utility of our in vitro system in studying interactions between chromatin-associated proteins and nucleosomal arrays.


1999 ◽  
Vol 19 (4) ◽  
pp. 2817-2827 ◽  
Author(s):  
Elizabeth S. Haswell ◽  
Erin K. O’Shea

ABSTRACT The Saccharomyces cerevisiae gene PHO5 is an excellent system with which to study regulated changes in chromatin structure. The PHO5 promoter is packaged into four positioned nucleosomes under repressing conditions; upon induction, the structure of these nucleosomes is altered such that the promoter DNA becomes accessible to nucleases. We report here the development and characterization of an in vitro system in which partially purified PHO5 minichromosomes undergo promoter chromatin remodeling. Several hallmarks of thePHO5 chromatin transition in vivo were reproduced in this system. Chromatin remodeling of PHO5minichromosomes required the transcription factors Pho4 and Pho2, was localized to the promoter region of PHO5, and was independent of the chromatin-remodeling complex Swi-Snf. In vitro chromatin remodeling also required the addition of fractionated nuclear extract and hydrolyzable ATP. This in vitro system should serve as a useful tool for identifying the components required for this reaction and for elucidating the mechanism by which the PHO5promoter chromatin structure is changed.


2003 ◽  
Vol 23 (17) ◽  
pp. 6210-6220 ◽  
Author(s):  
Pei-Wen Hsiao ◽  
Christy J. Fryer ◽  
Kevin W. Trotter ◽  
Weidong Wang ◽  
Trevor K. Archer

ABSTRACT Nuclear hormone receptors are ligand-dependent transcriptional regulators that modulate chromatin structure. However, the precise molecular mechanisms by which receptors recruit chromatin-remodeling activity are not fully elucidated. We show that in the absence of its ligand-binding domain, the glucocorticoid receptor (GR) is able to interact with both nuclear receptor coactivators and the BRG1 chromatin-remodeling complex in vivo. Individually, the GR makes direct interactions with BRG1-associated factor 60a (BAF60a) and BAF57, but not with BRG1, BAF155, or BAF170. Further, BAF60a possesses at least two interaction surfaces, one for GR and BRG1 and a second for BAF155 and BAF170. A GR mutant, GR(R488Q), that fails to interact with BAF60a in vitro has reduced chromatin-remodeling activity and reduced transcriptional activity from the promoter assembled as chromatin in vivo. Stable expression of a BAF60a truncation mutant, BAF60a4-140, caused chromatin-specific loss of GR functions in vivo. In the presence of the BAF60a mutant, the GR fails to interact with the BRG1 complex and consequently is also deficient in its ability to activate transcription from chromatin. Thus, in addition to previously identified BAF250, BAF60a may provide another critical and direct link between nuclear receptors and the BRG1 complex that is required for promoter recruitment and subsequent chromatin remodeling.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 637-637
Author(s):  
Daichi Inoue ◽  
Chew Guo-Liang ◽  
Bo Liu ◽  
Stanley C Lee ◽  
Brittany C Michel ◽  
...  

Mutations in the RNA splicing factor SF3B1 are common in MDS and other myeloid malignancies. SF3B1 mutations promote expression of mRNAs that use an aberrant, intron proximal 3' splice site (ss). Despite the consistency of this finding, linking aberrant splicing changes to disease pathogenesis has been a challenge. Here we identify aberrant splicing and downregulated expression of BRD9, a member of the recently described ATP-dependent non-canonical BAF (ncBAF) chromatin remodeling complex, across SF3B1 mutant leukemias. In so doing, we identify a novel role for altered ncBAF function in hematopoiesis and MDS. To systematically identify functionally important aberrant splicing events created by mutant SF3B1, we integrated differential splicing events in SF3B1 mutant versus wild-type MDS with a positive enrichment CRISPR screen mimicking splicing changes induced by mutant SF3B1 that promote NMD (non-sense mediated mRNA decay). We tested whether loss of any gene functionally inactivated by SF3B1 mutations promoted transformation of Ba/F3 and 32D cells. This identified a specific NMD-inducing aberrant splicing event in BRD9 which promoted cytokine independence (Fig. A) and exhibited striking aberrant splicing across CLL and MDS and across all mutational hotspots in SF3B1 (Fig. B). SF3B1 mutations cause exonization of a normally intronic sequence in BRD9, resulting in inclusion of a poison exon that interrupts BRD9's reading frame (Fig. C) and reduced BRD9 mRNA and protein expression through NMD (Fig. D). We confirmed that mutant SF3B1 suppressed full-length BRD9 levels without generating truncated BRD9 protein. Loss of BRD9 impaired ncBAF complex formation as indicated by abolished interaction between the ncBAF specific component GLTSCR1 and the ATPase subunit BRG1 upon chemical or spliceosomal BRD9 ablation (Fig. D). Given that prior work has linked mutant SF3B1 to use of aberrant 3' ss, we sought to understand the molecular basis for aberrant exon inclusion in BRD9 by mutant SF3B1. Lariat sequencing of SF3B1 mutant versus WT K562 cells and BRD9 minigene analyses identified use of a deep intronic branchpoint adenosine by mutant SF3B1 to promote BRD9 poison exon inclusion (Fig. E). The data above suggest a role for BRD9 downregulation in SF3B1 mutant leukemia. While prior work indicated that BRD9 is required in MLL-rearranged AML (Hohmman et al. Nature Chemical Biology 2016), the role of BRD9 in normal hematopoiesis or other subtypes of myeloid neoplasms has not been evaluated. Genetic downregulation of BRD9 in normal human hematopoietic progenitors from cord blood promoted myelopoiesis while impairing megakaryopoiesis. Interestingly and unexpectedly, BRD9 loss in CD34+ cells promoted terminal erythroid differentiation in vitro. To further evaluate BRD9's role in hematopoiesis in vivo, we also generated mice with inducible knockout of the bromodomain of BRD9 (required for BRD9 function) and generation of a frameshift transcript resulting in reduced Brd9 expression (Fig. F). Loss of Brd9 resulted in macrocytosis with bone marrow erythroid dysplasia in a dosage-dependent manner, along with impaired lymphopoiesis and myeloid skewing. Moreover, competitive transplantation of hematopoietic precursors from these mice revealed that ablation of Brd9 function impaired lymphoid reconstitution while promoting advantage of myeloid cells and hematopoietic precursors (Fig. G-I). In myeloid leukemia cells, introduction of SF3B1K700E or downregulation of BRD9 resulted in increased chromatin accessibility at promoters with a significant overlap in commonly upregulated genes. This finding suggests shared epigenetic effects of SF3B1K700E mutations and BRD9 loss (Fig. J). These data identify aberrant splicing of BRD9 across the spectrum of SF3B1 mutant cancers and identify a novel role for downregulation of ncBAF function in MDS pathogenesis. Consistent with human genetic data, genetic ablation of BRD9 function in mouse and human hematopoietic cells resulted in myeloid skewing and dyserythropoiesis. These data suggest that targeted correction of aberrant BRD9 splicing might serve as a novel therapeutic approach for SF3B1-mutant leukemias. Of note, treatment with drugs impairing the binding of mutant SF3B1 to RNA resulted in a dose-dependent rescue of aberrant BRD9 splicing in vitro (Fig. K) and in treatment of an SF3B1 mutant AML patient-derived xenograft in vivo. Figure Disclosures Kadoch: Foghorn Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2006 ◽  
Vol 26 (23) ◽  
pp. 9045-9059 ◽  
Author(s):  
Christopher J. Fry ◽  
Anne Norris ◽  
Michael Cosgrove ◽  
Jef D. Boeke ◽  
Craig L. Peterson

ABSTRACT Genetic experiments have identified two structurally similar nucleosomal domains, SIN and LRS, required for transcriptional repression at genes regulated by the SWI/SNF chromatin remodeling complex or for heterochromatic gene silencing, respectively. Each of these domains consists of histone H3 and H4 L1 and L2 loops that form a DNA-binding surface at either superhelical location (SHL) ±2.5 (LRS) or SHL ±0.5 (SIN). Here we show that alterations in the LRS domain do not result in Sin− phenotypes, nor does disruption of the SIN domain lead to loss of ribosomal DNA heterochromatic gene silencing (Lrs− phenotype). Furthermore, whereas disruption of the SIN domain eliminates intramolecular folding of nucleosomal arrays in vitro, alterations in the LRS domain have no effect on chromatin folding in vitro. In contrast to these dissimilarities, we find that the SIN and LRS domains are both required for recruitment of Sir2p and Sir4p to telomeric and silent mating type loci, suggesting that both surfaces can contribute to heterochromatin formation. Our study shows that structurally similar nucleosomal surfaces provide distinct functionalities in vivo and in vitro.


2010 ◽  
Vol 30 (7) ◽  
pp. 1673-1688 ◽  
Author(s):  
Xuan Shirley Li ◽  
Patrick Trojer ◽  
Tatsushi Matsumura ◽  
Jessica E. Treisman ◽  
Naoko Tanese

ABSTRACT The mammalian SWI/SNF chromatin-remodeling complex facilitates DNA access by transcription factors and the transcription machinery. The characteristic member of human SWI/SNF-A is BAF250/ARID1, of which there are two isoforms, BAF250a/ARID1a and BAF250b/ARID1b. Here we report that BAF250b complexes purified from mammalian cells contain elongin C (Elo C), a BC box binding component of an E3 ubiquitin ligase. BAF250b was found to have a BC box motif, associate with Elo C in a BC box-dependent manner, and, together with cullin 2 and Roc1, assemble into an E3 ubiquitin ligase. The BAF250b BC box mutant protein was unstable in vivo and was autoubiquitinated in a manner similar to that for the VHL BC box mutants. The discovery that BAF250 is part of an E3 ubiquitin ligase adds an enzymatic function to the chromatin-remodeling complex SWI/SNF-A. The immunopurified BAF250b E3 ubiquitin ligase was found to target histone H2B at lysine 120 for monoubiquitination in vitro. To date, all H2B monoubiquitination was attributed to the human homolog of yeast Bre1 (RNF20/40). Mutation of Drosophila osa, the homolog of BAF250, or depletion of BAF250 by RNA interference (RNAi) in cultured human cells resulted in global decreases in monoubiquitinated H2B, implicating BAF250 in the cross talk of histone modifications.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Swetansu Kumar Hota ◽  
Christine S Hemeryck ◽  
B Franklin Pugh ◽  
Blaine Bartholomew

1986 ◽  
Vol 239 (1) ◽  
pp. 115-120 ◽  
Author(s):  
U Seedorf ◽  
E Leberer ◽  
B J Kirschbaum ◽  
D Pette

The aim of this study was to investigate the effects of neural activity on the expression of fibre-type-specific patterns of metabolic enzymes at the levels of transcription and translation. For this purpose, changes in tissue amounts of citrate synthase (CS) and the H- and M-subunits of lactate dehydrogenase (LDH) were followed in fast-twitch rabbit muscles during low-frequency (10 Hz, 12 h/day) nerve stimulation. These stimulation-induced alterations were correlated with changes in tissue amounts of the total poly(A)+ (polyadenylated) RNA, poly(A)+ RNAs specifically translatable in vitro, yield of total ribosomes and distributions of monosomes and polysomes. The tissue contents of poly(A)+ RNAs translatable in vitro coding for CS and H- and M-LDH were quantified by immunoprecipitation of their translation products. Increases in total ribosome yields occurred after 4 days' stimulation, reaching a maximum between 14 and 21 days. Stimulation for only 1-2 days greatly increased the amount of monosomes. An increase in polysomes occurred before that in total ribosomes, suggesting that monosomes were integrated into polysomes. Total poly(A)+ RNA significantly increased in muscles stimulated for more than 6 days. A maximum increase of 2.5-fold was attained after 14-21 days. Chronic stimulation progressively induced the appearance of LDH isoenzymes containing the H-subunit, with a predominance of LDH-3. This shift corresponded to a slow decay of the M-subunit and a 2-fold steep increase in the H-subunit. These changes correlated with those of the respective poly(A)+ RNAs translatable in vitro, thus indicating that the re-arrangement of the LDH isoenzyme pattern is mainly due to qualitatively and quantitatively altered transcription. The increase in CS was biphasic and consisted of a moderate rise during the first 4 days of stimulation and a steep rise thereafter. The latter coincided with a steep increase in poly(A)+ RNA translatable in vitro coding for CS. In view of the early increase in translational capacity, it was concluded that the initial rise in CS resulted from selective post-transcriptional control and enhanced translation in vivo of existing mRNA, whereas its steep increase was due to enhanced transcription. These results indicate that the neurally regulated expression of phenotype-specific properties in muscle includes control of both transcription and translation.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Sign in / Sign up

Export Citation Format

Share Document