scholarly journals Visualizing translation dynamics at atomic detail inside a bacterial cell

2021 ◽  
Author(s):  
Liang Xue ◽  
Swantje Lenz ◽  
Maria Zimmermann-Kogadeeva ◽  
Dimitry Tegunov ◽  
Patrick Cramer ◽  
...  

Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells. Here, we use cryo-electron tomography and sub-tomogram analysis to visualize the dynamics of translation inside the prokaryote Mycoplasma pneumoniae. We first obtain an in-cell atomic model for the M. pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves thirteen ribosome states that differ in conformation and composition and reflect intermediates during translation. Based on these states, we animate translation elongation and demonstrate how antibiotics reshape the translation landscape inside cells. During translation elongation, ribosomes often arrange in a defined manner to form polysomes. By mapping the intracellular three-dimensional organization of translating ribosomes, we show that their association into polysomes exerts a local coordination mechanism that is mediated by the ribosomal protein L9. Our work demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells.

2020 ◽  
Author(s):  
Danielle Grotjahn ◽  
Saikat Chowdhury ◽  
Gabriel C. Lander

AbstractCryo-electron tomography is a powerful biophysical technique enabling three-dimensional visualization of complex biological systems. Macromolecular targets of interest identified within cryo-tomograms can be computationally extracted, aligned, and averaged to produce a better-resolved structure through a process called subtomogram averaging (STA). However, accurate alignment of macromolecular machines that exhibit extreme structural heterogeneity and conformational flexibility remains a significant challenge with conventional STA approaches. To expand the applicability of STA to a broader range of pleomorphic complexes, we developed a user-guided, focused refinement approach that can be incorporated into the standard STA workflow to facilitate the robust alignment of particularly challenging samples. We demonstrate that it is possible to align visually recognizable portions of multi-subunit complexes by providing a priori information regarding their relative orientations within cryo-tomograms, and describe how this strategy was applied to successfully elucidate the first three-dimensional structure of the dynein-dynactin motor protein complex bound to microtubules. Our approach expands the application of STA for solving a more diverse range of heterogeneous biological structures, and establishes a conceptual framework for the development of automated strategies to deconvolve the complexity of crowded cellular environments and improve in situ structure determination technologies.


2007 ◽  
Vol 189 (12) ◽  
pp. 4485-4493 ◽  
Author(s):  
Claire S. Ting ◽  
Chyongere Hsieh ◽  
Sesh Sundararaman ◽  
Carmen Mannella ◽  
Michael Marko

ABSTRACT In an age of comparative microbial genomics, knowledge of the near-native architecture of microorganisms is essential for achieving an integrative understanding of physiology and function. We characterized and compared the three-dimensional architecture of the ecologically important cyanobacterium Prochlorococcus in a near-native state using cryo-electron tomography and found that closely related strains have diverged substantially in cellular organization and structure. By visualizing native, hydrated structures within cells, we discovered that the MED4 strain, which possesses one of the smallest genomes (1.66 Mbp) of any known photosynthetic organism, has evolved a comparatively streamlined cellular architecture. This strain possesses a smaller cell volume, an attenuated cell wall, and less extensive intracytoplasmic (photosynthetic) membrane system compared to the more deeply branched MIT9313 strain. Comparative genomic analyses indicate that differences have evolved in key structural genes, including those encoding enzymes involved in cell wall peptidoglycan biosynthesis. Although both strains possess carboxysomes that are polygonal and cluster in the central cytoplasm, the carboxysomes of MED4 are smaller. A streamlined cellular structure could be advantageous to microorganisms thriving in the low-nutrient conditions characteristic of large regions of the open ocean and thus have consequences for ecological niche differentiation. Through cryo-electron tomography we visualized, for the first time, the three-dimensional structure of the extensive network of photosynthetic lamellae within Prochlorococcus and the potential pathways for intracellular and intermembrane movement of molecules. Comparative information on the near-native structure of microorganisms is an important and necessary component of exploring microbial diversity and understanding its consequences for function and ecology.


2008 ◽  
Vol 190 (7) ◽  
pp. 2588-2596 ◽  
Author(s):  
Mario J. Borgnia ◽  
Sriram Subramaniam ◽  
Jacqueline L. S. Milne

ABSTRACT Bdellovibrio bacteriovorus cells are small deltaproteobacterial cells that feed on other gram-negative bacteria, including human pathogens. Using cryo-electron tomography, we demonstrated that B. bacteriovorus cells are capable of substantial flexibility and local deformation of the outer and inner membranes without loss of cell integrity. These shape changes can occur in less than 2 min, and analysis of the internal architecture of highly bent cells showed that the overall distribution of molecular machines and the nucleoid is similar to that in moderately bent cells. B. bacteriovorus cells appear to contain an extensive internal network of short and long filamentous structures. We propose that rearrangements of these structures, in combination with the unique properties of the cell envelope, may underlie the remarkable ability of B. bacteriovorus cells to find and enter bacterial prey.


2011 ◽  
Vol 176 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Paul Guichard ◽  
Tino Krell ◽  
Michel Chevalier ◽  
Carole Vaysse ◽  
Olivier Adam ◽  
...  

2016 ◽  
Vol 110 (3) ◽  
pp. 129a-130a
Author(s):  
Zhixian Zhang ◽  
Feng He ◽  
Michael F. Schmid ◽  
Theodore G. Wensel

2008 ◽  
Vol 183 (5) ◽  
pp. 923-932 ◽  
Author(s):  
Khanh Huy Bui ◽  
Hitoshi Sakakibara ◽  
Tandis Movassagh ◽  
Kazuhiro Oiwa ◽  
Takashi Ishikawa

The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins.


2021 ◽  
Vol 478 (10) ◽  
pp. 1827-1845
Author(s):  
Euan Pyle ◽  
Giulia Zanetti

Cryo-electron tomography (cryo-ET) can be used to reconstruct three-dimensional (3D) volumes, or tomograms, from a series of tilted two-dimensional images of biological objects in their near-native states in situ or in vitro. 3D subvolumes, or subtomograms, containing particles of interest can be extracted from tomograms, aligned, and averaged in a process called subtomogram averaging (STA). STA overcomes the low signal to noise ratio within the individual subtomograms to generate structures of the particle(s) of interest. In recent years, cryo-ET with STA has increasingly been capable of reaching subnanometer resolution due to improvements in microscope hardware and data processing strategies. There has also been an increase in the number and quality of software packages available to process cryo-ET data with STA. In this review, we describe and assess the data processing strategies available for cryo-ET data and highlight the recent software developments which have enabled the extraction of high-resolution information from cryo-ET datasets.


2020 ◽  
Author(s):  
Gong-Her Wu ◽  
Patrick G. Mitchell ◽  
Jesus G. Galaz-Montoya ◽  
Corey W. Hecksel ◽  
Emily M. Sontag ◽  
...  

SUMMARYThree-dimensional (3D) visualization of vitrified cells can uncover structures of subcellular complexes without chemical fixation or staining. Here, we present a pipeline integrating three imaging modalities to visualize the same specimen at cryogenic temperature at different scales: cryo-fluorescence confocal microscopy, volume cryo-focused ion beam scanning electron microscopy, and transmission cryo-electron tomography. Our proof-of-concept benchmark revealed the 3D distribution of organelles and subcellular structures in whole heat-shocked yeast cells, including the ultrastructure of protein inclusions that recruit fluorescently-labelled chaperone Hsp104. Since our workflow efficiently integrates imaging at three different scales and can be applied to other types of cells, it could be used for large-scale phenotypic studies of frozen-hydrated specimens in a variety of healthy and diseased conditions with and without treatments.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Swetha Vijayakrishnan ◽  
Marion McElwee ◽  
Colin Loney ◽  
Frazer Rixon ◽  
David Bhella

Abstract Cryo electron microscopy (cryo-EM), a key method for structure determination involves imaging purified material embedded in vitreous ice. Images are then computationally processed to obtain three-dimensional structures approaching atomic resolution. There is increasing interest in extending structural studies by cryo-EM into the cell, where biological structures and processes may be imaged in context. The limited penetrating power of electrons prevents imaging of thick specimens (> 500 nm) however. Cryo-sectioning methods employed to overcome this are technically challenging, subject to artefacts or involve specialised and costly equipment. Here we describe the first structure of herpesvirus capsids determined by sub-tomogram averaging from nuclei of eukaryotic cells, achieved by cryo-electron tomography (cryo-ET) of re-vitrified cell sections prepared using the Tokuyasu method. Our reconstructions confirm that the capsid associated tegument complex is present on capsids prior to nuclear egress. We demonstrate that this method is suited to both 3D structure determination and correlative light/electron microscopy, thus expanding the scope of cryogenic cellular imaging.


Sign in / Sign up

Export Citation Format

Share Document