scholarly journals HSP70-binding motifs function as protein quality control degrons

2021 ◽  
Author(s):  
Amanda B Abildgaard ◽  
Søren D Petersen ◽  
Fia B Larsen ◽  
Caroline Kampmeyer ◽  
Kristoffer E Johansson ◽  
...  

Protein quality control (PQC) degrons are short protein segments that target misfolded proteins for degradation through the ubiquitin-proteasome system (UPS). To uncover how PQC degrons function, we performed a screen in Saccharomyces cerevisiae by fusing a library of flexible tetrapeptides to the C-terminus of the Ura3-HA-GFP reporter. The identified degrons exhibited high sequence variation but with marked hydrophobicity. Notably, the best scoring degrons constitute predicted Hsp70-binding motifs. When directly tested, a canonical Hsp70 binding motif (RLLL) functioned as a dose-dependent PQC degron that was targeted by Hsp70, Hsp110, Fes1, several Hsp40 J-domain co-chaperones and the PQC E3 ligase Ubr1. Our results suggest that multiple PQC degrons overlap with chaperone-binding sites and that PQC-linked degradation achieves specificity via chaperone binding. Thus, the PQC system has evolved to exploit the intrinsic capacity of chaperones to recognize misfolded proteins, thereby placing them at the nexus of protein folding and degradation.

2020 ◽  
Author(s):  
Hongyi Wu ◽  
Davis T.W. Ng ◽  
Ian Cheong ◽  
Paul Matsudaira

AbstractThe quality control of intracellular proteins is achieved by degrading misfolded proteins which cannot be refolded by molecular chaperones. In eukaryotes, such degradation is handled primarily by the ubiquitin-proteasome system. However, it remains unclear whether and how protein quality control deploys various deubiquitinases. To address this question, we screened deletions or mutation of the 20 deubiquitinase genes in Saccharomyces cerevisiae and discovered that almost half of the mutations slowed the removal of misfolded proteins whereas none of the remaining mutations accelerated this process significantly. Further characterization revealed that Ubp6 maintains the level of free ubiquitin to promote the elimination of misfolded cytosolic proteins, while Ubp3 supports the degradation of misfolded cytosolic and ER luminal proteins by different mechanisms.


2018 ◽  
Vol 87 (1) ◽  
pp. 751-782 ◽  
Author(s):  
Nicole Berner ◽  
Karl-Richard Reutter ◽  
Dieter H. Wolf

Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin–proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Hanming Zhang ◽  
Xuejun "XJ" Wang

Protein quality control (PQC) functions to minimize the level and toxicity of misfolded proteins in the cell. PQC relies on molecular chaperones and the targeted degradation of misfolded proteins. The latter is currently known to require the ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway (ALP). Virtually all cardiovascular diseases end up heart failure (HF), the leading cause of death of our society. UPS function insufficiency is implicated in the genesis of a large subset of HF, making cardiac PQC enhancement via promoting UPS and ALP function a promising therapeutic strategy to treat HF. Previously, we have demonstrated that stimulating protein kinase G (PKG) genetically or via inhibition of the type 5 phosphodiesterase (PDE5) improves UPS performance, facilitates the removal of misfolded proteins in cardiomyocytes and slows down the progression of cardiac proteinopathy in a transgenic mouse model (CryAB R120G ). PKA has also been shown to enhance proteasomal function. Our preliminary studies reveal that myocardial protein levels of PDE1A, which suppresses both PKG and PKA, are remarkably elevated in the CryAB R120G mice. Hence we hypothesize that PDE1 inhibition (PDE1I) stimulates cardiac proteasomes via PKG and PKA activation and thereby protects against cardiac proteotoxicity. To test our hypothesis, we took advantage of a proven surrogate UPS substrate (GFPu or GFPdgn) as well as a bona fide misfolded protein (CryAB R120G ) that is known to induce cardiac proteinopathy in human and mice. In cultured cardiomyocytes, PDE1 inhibitor LSN2790158 dose- and time-dependently decreased GFPu. Cycloheximide (CHX) chase assays further confirmed that PDE1I shortened the half-life of GFPu, indicative of improved UPS performance. Furthermore, PDE1I promoted the degradation of CryAB R120G . Our in vivo findings revealed that GFPdgn mice treated with LSN2790158 (3mg/kg, i.p.) displayed a significant reduction of myocardial GFPdgn protein but not mRNA levels. Taken together, our data strongly indicate that PDE1I improves cardiac UPS performance and PDE1 represents a potential target to treat cardiac diseases with elevated proteotoxicity.


Author(s):  
Xu Zhou ◽  
Xiongjin Chen ◽  
Tingting Hong ◽  
Miaoping Zhang ◽  
Yujie Cai ◽  
...  

AbstractThe tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.


Author(s):  
Yasmeena Akhter ◽  
Jahangir Nabi ◽  
Hinna Hamid ◽  
Nahida Tabassum ◽  
Faheem Hyder Pottoo ◽  
...  

Proteostasis is essential for regulating the integrity of the proteome. Disruption of proteostasis under some rigorous conditions leads to the aggregation and accumulation of misfolded toxic proteins, which plays a central role in the pathogenesis of protein conformational disorders. The protein quality control (PQC) system serves as a multi-level security system to shield cells from abnormal proteins. The intrinsic PQC systems maintaining proteostasis include the ubiquitin-proteasome system (UPS), chaperon-mediated autophagy (CMA), and autophagy-lysosome pathway (ALP) that serve to target misfolded proteins for unfolding, refolding, or degradation. Alterations of PQC systems in neurons have been implicated in the pathogenesis of various neurodegenerative disorders. This chapter provides an overview of PQC pathways to set a framework for discussion of the role of PQC in neurodegenerative disorders. Additionally, various pharmacological approaches targeting PQC are summarized.


2018 ◽  
Vol 87 (1) ◽  
pp. 725-749 ◽  
Author(s):  
Charisma Enam ◽  
Yifat Geffen ◽  
Tommer Ravid ◽  
Richard G. Gardner

Nuclear proteins participate in diverse cellular processes, many of which are essential for cell survival and viability. To maintain optimal nuclear physiology, the cell employs the ubiquitin-proteasome system to eliminate damaged and misfolded proteins in the nucleus that could otherwise harm the cell. In this review, we highlight the current knowledge about the major ubiquitin-protein ligases involved in protein quality control degradation (PQCD) in the nucleus and how they orchestrate their functions to eliminate misfolded proteins in different nuclear subcompartments. Many human disorders are causally linked to protein misfolding in the nucleus, hence we discuss major concepts that still need to be clarified to better understand the basis of the nuclear misfolded proteins’ toxic effects. Additionally, we touch upon potential strategies for manipulating nuclear PQCD pathways to ameliorate diseases associated with protein misfolding and aggregation in the nucleus.


2021 ◽  
Author(s):  
Caroline Kampmeyer ◽  
Sven Larsen-Ledet ◽  
Morten Rose Wagnkilde ◽  
Mathias Michelsen ◽  
Henriette K. M. Iversen ◽  
...  

Degrons are short stretches of amino acids or structural motifs that are embedded in proteins. They mediate recognition by E3 ubiquitin-protein ligases and thus confer protein degradation via the ubiquitin-proteasome system. Well-described degrons include the N-degrons, destruction boxes, and the PIP degrons, which mediate the controlled degradation of various proteins including signaling components and cell cycle regulators. In comparison, the so-called protein quality control (PQC) degrons that mediate the degradation of structurally destabilized or misfolded proteins are not well described. Here, we show that disease-linked DHFR missense variants are structurally destabilized and chaperone-dependent proteasome targets. We systematically mapped regions within DHFR to assess those that act as cytosolic PQC degrons in yeast cells. Two regions, DHFR-Deg13-36 (here Deg1) and DHFR-Deg61-84 (here Deg2), act as degrons and conferred degradation to unrelated fusion partners. The proteasomal turnover of Deg2 was dependent on the molecular chaperone Hsp70. Structural analyses by NMR and hydrogen/deuterium exchange revealed that Deg2 is buried in wild-type DHFR, but becomes transiently exposed in the disease-linked missense variants.


2019 ◽  
Author(s):  
Shireen A. Sarraf ◽  
Hetal V. Shah ◽  
Gil Kanfer ◽  
Michael E. Ward ◽  
Richard J. Youle

AbstractMisfolded protein aggregates can disrupt cellular homeostasis and cause toxicity, a hallmark of numerous neurodegenerative diseases. Protein quality control by the ubiquitin proteasome system (UPS) and autophagy is vital for clearance of aggregates and maintenance of cellular homeostasis1. Autophagy receptor proteins bridge the interaction between ubiquitinated proteins and the autophagy machinery allowing selective elimination of cargo2. Aggrephagy is critical to protein quality control, but how aggregates are recognized and targeted for degradation is not well understood. Here we examine the requirements for 5 autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in proteotoxic stress-induced aggregate clearance. Endogenous TAX1BP1 is both recruited to and required for the clearance of stress-induced aggregates while overexpression of TAX1BP1 increases aggregate clearance through autophagy. Furthermore, TAX1BP1 depletion sensitizes cells to proteotoxic stress and Huntington’s disease-linked polyQ proteins, whereas TAX1BP1 overexpression clears cells of polyQ protein aggregates by autophagy. We propose a broad role for TAX1BP1 in the clearance of cytotoxic proteins, thus identifying a new mode of clearance of protein inclusions.


Sign in / Sign up

Export Citation Format

Share Document