scholarly journals Profiling the Landscape of Drug Resistance Mutations in Neosubstrates to Molecular Glue Degraders

2021 ◽  
Author(s):  
Pallavi M Gosavi ◽  
Kevin C Ngan ◽  
Megan Yeo ◽  
Cindy Su ◽  
Jiaming Li ◽  
...  

Targeted protein degradation (TPD) holds immense promise for drug discovery but mechanisms of acquired resistance to degraders remain to be fully identified. Here we used CRISPR-suppressor scanning to identify mechanistic classes of drug resistance mutations to molecular glue degraders in GSPT1 and RBM39, neosubstrates targeted by E3 ligase substrate receptors cereblon and DCAF15, respectively. While many mutations directly alter the ternary complex heterodimerization surface, distal resistance sites were also identified. Several distal mutations in RBM39 led to modest decreases in degradation yet can enable cell survival, underscoring how small differences in degradation can lead to resistance. Integrative analysis of resistance sites across GSPT1 and RBM39 revealed varying levels of sequence conservation and mutational constraint that control the emergence of different resistance mechanisms, highlighting that many regions co-opted by TPD are inessential. Altogether, our study identifies common resistance mechanisms for molecular glue degraders and outlines a general approach to survey neosubstrate requirements necessary for effective degradation.

2019 ◽  
Vol 74 (10) ◽  
pp. 3035-3043
Author(s):  
M H W Huibers ◽  
C Kityo ◽  
R S Boerma ◽  
E Kaudha ◽  
K C E Sigaloff ◽  
...  

Abstract Objectives To evaluate long-term virological failure (VF) and drug resistance among HIV-infected Ugandan children on first-line ART. Methods In a multicentre prospective cohort study, viral load (VL) and drug resistance mutations (DRMs) were investigated at baseline and 6 monthly intervals in children (age ≤ 12 years). VF (two consecutive VLs >1000 copies/mL or death after 6 months of ART) was defined as early VF (0–24 months of ART) or late VF (25–48 months of ART). An active regimen was defined as partially active if the genotypic susceptibility score (GSS) was <3. Results Between 2010 and 2011, 316 children were enrolled. Viral suppression was achieved in 75.8%, 71.5%, 72.6% and 69.2% at 12, 24, 36 and 48 months. VF occurred in 111/286 (38.8%), of which 67.6% was early and 32.4% late VF. Early VF was associated with a partially active regimen at baseline (OR 6.0, 95% CI 1.9–18.5), poor adherence (OR 3.1, 95% CI 1.3–7.4) and immunodeficiency (OR 3.3, 95% CI 1.1–10.2). Late VF was associated with age >3 years (OR 2.5, 95% CI 1.0–6.6) and WHO stage 3/4 (OR 4.2, 95% CI 1.4–13.4). Acquired DRMs were detected in 27.0% before 24 months, versus 14.4% after 24 months (P < 0.001). A total of 92.2% of the children with early VF, versus 56.2% with late VF, had a partially active regimen (P < 0.001). Conclusions VF rates were high, occurred predominantly in the first 24 months and appeared to increase again in year four. Risk factors and patterns of early VF/DRMs were different from those of late VF/DRMs. Virological control may improve by close monitoring and prompt switching to second-line therapy in the first 24 months. Late VF may be prevented by early start of ART.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Christina Popp ◽  
Bernardo Ramírez-Zavala ◽  
Sonja Schwanfelder ◽  
Ines Krüger ◽  
Joachim Morschhäuser

ABSTRACTThe clonal population structure ofCandida albicanssuggests that (para)sexual recombination does not play an important role in the lifestyle of this opportunistic fungal pathogen, an assumption that is strengthened by the fact that mostC. albicansstrains are heterozygous at the mating type locus (MTL) and therefore mating-incompetent. On the other hand, mating might occur within clonal populations and allow the combination of advantageous traits that were acquired by individual cells to adapt to adverse conditions. We have investigated if parasexual recombination may be involved in the evolution of highly drug-resistant strains exhibiting multiple resistance mechanisms against fluconazole, an antifungal drug that is commonly used to treat infections byC. albicans. Growth of strains that were heterozygous forMTLand different fluconazole resistance mutations in the presence of the drug resulted in the emergence of derivatives that had become homozygous for the mutated allele and the mating type locus and exhibited increased drug resistance. WhenMTLa/aandMTLα/α cells of these strains were mixed in all possible combinations, we could isolate mating products containing the genetic material from both parents. The initial mating products did not exhibit higher drug resistance than their parental strains, but further propagation under selective pressure resulted in the loss of the wild-type alleles and increased fluconazole resistance. Therefore, fluconazole treatment not only selects for resistance mutations but also promotes genomic alterations that confer mating competence, which allows cells in an originally clonal population to exchange individually acquired resistance mechanisms and generate highly drug-resistant progeny.IMPORTANCESexual reproduction is an important mechanism in the evolution of species, since it allows the combination of advantageous traits of individual members in a population. The pathogenic yeastCandida albicansis a diploid organism that normally propagates in a clonal fashion, because heterozygosity at the mating type locus (MTL) inhibits mating between cells. Here we show thatC. albicanscells that have acquired drug resistance mutations during treatment with the commonly used antifungal agent fluconazole rapidly develop further increased resistance by genome rearrangements that result in simultaneous loss of heterozygosity for the mutated allele and the mating type locus. This enables the drug-resistant cells of a population to switch to the mating-competent opaque morphology and mate with each other to combine different individually acquired resistance mechanisms. The tetraploid mating products reassort their merged genomes and, under selective pressure by the drug, generate highly resistant progeny that have retained the advantageous mutated alleles. Parasexual propagation, promoted by stress-induced genome rearrangements that result in the acquisition of mating competence in cells with adaptive mutations, may therefore be an important mechanism in the evolution ofC. albicanspopulations.


2016 ◽  
Author(s):  
Jonathan S. Brammeld ◽  
Mia Petljak ◽  
Inigo Martincorena ◽  
Steven P. Williams ◽  
Luz Garcia Alonso ◽  
...  

AbstractDrug resistance is an almost inevitable consequence of cancer therapy and ultimately proves fatal for the majority of patients. In many cases this is the consequence of specific gene mutations that have the potential to be targeted to re-sensitize the tumor. The ability to uniformly saturate the genome with point mutations without chromosome or nucleotide sequence context bias would open the door to identify all putative drug resistance mutations in cancer models. Here we describe such a method for elucidating drug resistance mechanisms using genome-wide chemical mutagenesis allied to next-generation sequencing. We show that chemically mutagenizing the genome of cancer cells dramatically increases the number of drug-resistant clones and allows the detection of both known and novel drug resistance mutations. We have developed an efficient computational process that allows for the rapid identification of involved pathways and druggable targets. Such a priori knowledge would greatly empower serial monitoring strategies for drug resistance in the clinic as well as the development of trials for drug resistant patients.


2020 ◽  
Vol 25 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Shaoyong Lu ◽  
Yuran Qiu ◽  
Duan Ni ◽  
Xinheng He ◽  
Jun Pu ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 264
Author(s):  
Miaomiao Li ◽  
Shujia Liang ◽  
Chao Zhou ◽  
Min Chen ◽  
Shu Liang ◽  
...  

Patients with antiretroviral therapy interruption have a high risk of virological failure when re-initiating antiretroviral therapy (ART), especially those with HIV drug resistance. Next-generation sequencing may provide close scrutiny on their minority drug resistance variant. A cross-sectional study was conducted in patients with ART interruption in five regions in China in 2016. Through Sanger and next-generation sequencing in parallel, HIV drug resistance was genotyped on their plasma samples. Rates of HIV drug resistance were compared by the McNemar tests. In total, 174 patients were included in this study, with a median 12 (interquartile range (IQR), 6–24) months of ART interruption. Most (86.2%) of them had received efavirenz (EFV)/nevirapine (NVP)-based first-line therapy for a median 16 (IQR, 7–26) months before ART interruption. Sixty-one (35.1%) patients had CRF07_BC HIV-1 strains, 58 (33.3%) CRF08_BC and 35 (20.1%) CRF01_AE. Thirty-four (19.5%) of the 174 patients were detected to harbor HIV drug-resistant variants on Sanger sequencing. Thirty-six (20.7%), 37 (21.3%), 42 (24.1%), 79 (45.4%) and 139 (79.9) patients were identified to have HIV drug resistance by next-generation sequencing at 20% (v.s. Sanger, p = 0.317), 10% (v.s. Sanger, p = 0.180), 5% (v.s. Sanger, p = 0.011), 2% (v.s. Sanger, p < 0.001) and 1% (v.s. Sanger, p < 0.001) of detection thresholds, respectively. K65R was the most common minority mutation, of 95.1% (58/61) and 93.1% (54/58) in CRF07_BC and CRF08_BC, respectively, when compared with 5.7% (2/35) in CRF01_AE (p < 0.001). In 49 patients that followed-up a median 10 months later, HIV drug resistance mutations at >20% frequency such as K103N, M184VI and P225H still existed, but with decreased frequencies. The prevalence of HIV drug resistance in ART interruption was higher than 15% in the survey. Next-generation sequencing was able to detect more minority drug resistance variants than Sanger. There was a sharp increase in minority drug resistance variants when the detection threshold was below 5%.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 260
Author(s):  
Ronay Cetin ◽  
Eva Quandt ◽  
Manuel Kaulich

Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance. The presence of drug resistance is, however, tightly coupled to changes in cellular homeostasis, which can lead to resistance-coupled vulnerabilities. Unbiased gene perturbations through RNAi and CRISPR technologies are invaluable tools to establish genotype-to-phenotype relationships at the genome scale. Moreover, their application to cancer cell lines can uncover new vulnerabilities that are associated with resistance mechanisms. Here, we discuss targeted and unbiased RNAi and CRISPR efforts in the discovery of drug resistance mechanisms by focusing on first-in-line chemotherapy and their enforced vulnerabilities, and we present a view forward on which measures should be taken to accelerate their clinical translation.


2021 ◽  
Vol 22 (10) ◽  
pp. 5304
Author(s):  
Ana Santos-Pereira ◽  
Vera Triunfante ◽  
Pedro M. M. Araújo ◽  
Joana Martins ◽  
Helena Soares ◽  
...  

The success of antiretroviral treatment (ART) is threatened by the emergence of drug resistance mutations (DRM). Since Brazil presents the largest number of people living with HIV (PLWH) in South America we aimed at understanding the dynamics of DRM in this country. We analyzed a total of 20,226 HIV-1 sequences collected from PLWH undergoing ART between 2008–2017. Results show a mild decline of DRM over the years but an increase of the K65R reverse transcriptase mutation from 2.23% to 12.11%. This increase gradually occurred following alterations in the ART regimens replacing zidovudine (AZT) with tenofovir (TDF). PLWH harboring the K65R had significantly higher viral loads than those without this mutation (p < 0.001). Among the two most prevalent HIV-1 subtypes (B and C) there was a significant (p < 0.001) association of K65R with subtype C (11.26%) when compared with subtype B (9.27%). Nonetheless, evidence for K65R transmission in Brazil was found both for C and B subtypes. Additionally, artificial neural network-based immunoinformatic predictions suggest that K65R could enhance viral recognition by HLA-B27 that has relatively low prevalence in the Brazilian population. Overall, the results suggest that tenofovir-based regimens need to be carefully monitored particularly in settings with subtype C and specific HLA profiles.


Sign in / Sign up

Export Citation Format

Share Document