scholarly journals Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 260
Author(s):  
Ronay Cetin ◽  
Eva Quandt ◽  
Manuel Kaulich

Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance. The presence of drug resistance is, however, tightly coupled to changes in cellular homeostasis, which can lead to resistance-coupled vulnerabilities. Unbiased gene perturbations through RNAi and CRISPR technologies are invaluable tools to establish genotype-to-phenotype relationships at the genome scale. Moreover, their application to cancer cell lines can uncover new vulnerabilities that are associated with resistance mechanisms. Here, we discuss targeted and unbiased RNAi and CRISPR efforts in the discovery of drug resistance mechanisms by focusing on first-in-line chemotherapy and their enforced vulnerabilities, and we present a view forward on which measures should be taken to accelerate their clinical translation.

Parasitology ◽  
2013 ◽  
Vol 141 (1) ◽  
pp. 77-82 ◽  
Author(s):  
DAVID HORN

SUMMARYThe availability of genome sequence data has facilitated the development of high-throughput genetic screening approaches in microbial pathogens. In the African trypanosome, Trypanosoma brucei, genome-scale RNA interference screens have proven particularly effective in this regard. These genetic screens allow for identification of the genes that contribute to a particular pathway or mechanisms of interest. The approach has been used to assess loss-of-fitness, revealing the genes and proteins required for parasite viability and growth. The outputs from these screens predict essential and dispensable genes and facilitate drug target prioritization efforts. The approach has also been used to assess resistance to anti-trypanosomal drugs, revealing the genes and proteins that facilitate drug uptake and action. These outputs also highlight likely mechanisms underlying clinically relevant drug resistance. I first review these findings in the context of what we know about current drugs. I then describe potential contributions that these high-throughput approaches could make to the development and implementation of new drugs.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Christina Popp ◽  
Bernardo Ramírez-Zavala ◽  
Sonja Schwanfelder ◽  
Ines Krüger ◽  
Joachim Morschhäuser

ABSTRACTThe clonal population structure ofCandida albicanssuggests that (para)sexual recombination does not play an important role in the lifestyle of this opportunistic fungal pathogen, an assumption that is strengthened by the fact that mostC. albicansstrains are heterozygous at the mating type locus (MTL) and therefore mating-incompetent. On the other hand, mating might occur within clonal populations and allow the combination of advantageous traits that were acquired by individual cells to adapt to adverse conditions. We have investigated if parasexual recombination may be involved in the evolution of highly drug-resistant strains exhibiting multiple resistance mechanisms against fluconazole, an antifungal drug that is commonly used to treat infections byC. albicans. Growth of strains that were heterozygous forMTLand different fluconazole resistance mutations in the presence of the drug resulted in the emergence of derivatives that had become homozygous for the mutated allele and the mating type locus and exhibited increased drug resistance. WhenMTLa/aandMTLα/α cells of these strains were mixed in all possible combinations, we could isolate mating products containing the genetic material from both parents. The initial mating products did not exhibit higher drug resistance than their parental strains, but further propagation under selective pressure resulted in the loss of the wild-type alleles and increased fluconazole resistance. Therefore, fluconazole treatment not only selects for resistance mutations but also promotes genomic alterations that confer mating competence, which allows cells in an originally clonal population to exchange individually acquired resistance mechanisms and generate highly drug-resistant progeny.IMPORTANCESexual reproduction is an important mechanism in the evolution of species, since it allows the combination of advantageous traits of individual members in a population. The pathogenic yeastCandida albicansis a diploid organism that normally propagates in a clonal fashion, because heterozygosity at the mating type locus (MTL) inhibits mating between cells. Here we show thatC. albicanscells that have acquired drug resistance mutations during treatment with the commonly used antifungal agent fluconazole rapidly develop further increased resistance by genome rearrangements that result in simultaneous loss of heterozygosity for the mutated allele and the mating type locus. This enables the drug-resistant cells of a population to switch to the mating-competent opaque morphology and mate with each other to combine different individually acquired resistance mechanisms. The tetraploid mating products reassort their merged genomes and, under selective pressure by the drug, generate highly resistant progeny that have retained the advantageous mutated alleles. Parasexual propagation, promoted by stress-induced genome rearrangements that result in the acquisition of mating competence in cells with adaptive mutations, may therefore be an important mechanism in the evolution ofC. albicanspopulations.


Author(s):  
Priyanka Ashwath ◽  
Akhila Dharnappa Sannejal

AbstractNosocomial infections caused by Klebsiella species are characterized by high rates of morbidity and mortality. The emergence of the multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative bacteria reduces the antibiotic efficacy in the treatment of infections caused by the microorganisms. Management of these infections is often difficult, due to the high frequency of strains resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. Efflux systems are significant in conferring intrinsic and acquired resistance to the bacteria. The emergence of increasing drug resistance among Klebsiella pneumoniae nosocomial isolates has limited the therapeutic options for treatment of these infections and hence there is a constant quest for an alternative. In this review, we discuss various resistance mechanisms, focusing on efflux pumps and related genes in conferring resistance to Klebsiella. The role of various efflux pump inhibitors (EPIs) in restoring the antibacterial activity has also been discussed. In specific, antisense oligonucleotides as alternative therapeutics in combatting efflux-mediated resistance in Klebsiella species have focused upon.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
T. L. Peters ◽  
T. Patil ◽  
A. T. Le ◽  
K. D. Davies ◽  
P. M. Brzeskiewicz ◽  
...  

AbstractEGFR mutant non-small cell lung cancer patients' disease demonstrates remarkable responses to EGFR-targeted therapy, but inevitably they succumb to acquired resistance, which can be complex and difficult to treat. Analyzing acquired resistance through broad molecular testing is crucial to understanding the resistance mechanisms and developing new treatment options. We performed diverse clinical testing on a patient with successive stages of acquired resistance, first to an EGFR inhibitor with MET gene amplification and then subsequently to a combination EGFR and MET targeted therapies. A patient-derived cell line obtained at the time of disease progression was used to identify NRAS gene amplification as an additional driver of drug resistance to combination EGFR/MET therapies. Analysis of downstream signaling revealed extracellular signal-related kinase activation that could only be eliminated by trametinib treatment, while Akt activation could be modulated by various combinations of MET, EGFR, and PI3K inhibitors. The combination of an EGFR inhibitor with a MEK inhibitor was identified as a possible treatment option to overcome drug resistance related to NRAS gene amplification.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6058
Author(s):  
Vikas Patel ◽  
István Szász ◽  
Viktória Koroknai ◽  
Tímea Kiss ◽  
Margit Balázs

Combination treatment using BRAF/MEK inhibitors is a promising therapy for patients with advanced BRAFV600E/K mutant melanoma. However, acquired resistance largely limits the clinical efficacy of this drug combination. Identifying resistance mechanisms is essential to reach long-term, durable responses. During this study, we developed six melanoma cell lines with acquired resistance for BRAFi/MEKi treatment and defined the molecular alterations associated with drug resistance. We observed that the invasion of three resistant cell lines increased significantly compared to the sensitive cells. RNA-sequencing analysis revealed differentially expressed genes that were functionally linked to a variety of biological functions including epithelial-mesenchymal transition, the ROS pathway, and KRAS-signalling. Using proteome profiler array, several differentially expressed proteins were detected, which clustered into a unique pattern. Galectin showed increased expression in four resistant cell lines, being the highest in the WM1617E+BRes cells. We also observed that the resistant cells behaved differently after the withdrawal of the inhibitors, five were not drug addicted at all and did not exhibit significantly increased lethality; however, the viability of one resistant cell line (WM1617E+BRes) decreased significantly. We have selected three resistant cell lines to investigate the protein expression changes after drug withdrawal. The expression patterns of CapG, Enolase 2, and osteopontin were similar in the resistant cells after ten days of “drug holiday”, but the Snail protein was only expressed in the WM1617E+BRes cells, which showed a drug-dependent phenotype, and this might be associated with drug addiction. Our results highlight that melanoma cells use several types of resistance mechanisms involving the altered expression of different proteins to bypass drug treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Danjie Li ◽  
Xiaoling Hong ◽  
Feijie Zhao ◽  
Xinxin Ci ◽  
Songling Zhang

Abstract Background Acquired resistance to therapeutic drugs has become an important issue in treating ovarian cancer. Studies have shown that the prevalent chemotherapy resistance (cisplatin, paclitaxel etc.) for ovarian cancer occurs partly because of decreased production of reactive oxygen species within the mitochondria of ovarian cancer cells. Main Body Nuclear erythroid-related factor-2 (Nrf2) mainly controls the regulation of transcription of genes through the Keap1-Nrf2-ARE signaling pathway and protects cells by fighting oxidative stress and defending against harmful substances. This protective effect is reflected in the promotion of tumor cell growth and their resistance to chemotherapy drugs. Therefore, inhibition of the Nrf2 pathway may reverse drug resistance. In this review, we describe the functions of Nrf2 in drug resistance based on Nrf2-associated signaling pathways determined in previous studies. Conclusions Further studies on the relevant mechanisms of Nrf2 may help improve the outcomes of ovarian cancer therapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 318
Author(s):  
Valentina Angerilli ◽  
Francesca Galuppini ◽  
Gianluca Businello ◽  
Luca Dal Santo ◽  
Edoardo Savarino ◽  
...  

The advent of precision therapies against specific gene alterations characterizing different neoplasms is revolutionizing the oncology field, opening novel treatment scenarios. However, the onset of resistance mechanisms put in place by the tumor is increasingly emerging, making the use of these drugs ineffective over time. Therefore, the search for indicators that can monitor the development of resistance mechanisms and above all ways to overcome it, is increasingly important. In this scenario, microRNAs are ideal candidate biomarkers, being crucial post-transcriptional regulators of gene expression with a well-known role in mediating mechanisms of drug resistance. Moreover, as microRNAs are stable molecules, easily detectable in tissues and biofluids, they are the ideal candidate biomarker to identify patients with primary resistance to a specific targeted therapy and those who have developed acquired resistance. The aim of this review is to summarize the major studies that have investigated the role of microRNAs as mediators of resistance to targeted therapies currently in use in gastro-intestinal neoplasms, namely anti-EGFR, anti-HER2 and anti-VEGF antibodies, small-molecule tyrosine kinase inhibitors and immune checkpoint inhibitors. For every microRNA and microRNA signature analyzed, the putative mechanisms underlying drug resistance were outlined and the potential to be translated in clinical practice was evaluated.


2021 ◽  
Author(s):  
wei liu ◽  
Yaoting Sun ◽  
weigang ge ◽  
fangfei zhang ◽  
lin gan ◽  
...  

Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia (CML). To understand the underlying resistance mechanisms in response to imatinib (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for two months to generate derivative cells with mild, intermediate and severe resistance to the drugs as defined by their increasing resistance index (RI). PulseDIA-based quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7,082 proteotypic proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin Signaling Pathway was found to be significantly enriched in both ADR- and IMA-resistant K562 cells. In particular, IDH2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated IDH2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.


2019 ◽  
Author(s):  
Manuela Carrasquilla ◽  
Theo Sanderson ◽  
Ruddy Montandon ◽  
Julian Rayner ◽  
Alena Pance ◽  
...  

AbstractThe recurrent emergence of drug resistance in Plasmodium falciparum increases the urgency to genetically validate drug resistance mechanisms and identify new targets. Reverse genetics have facilitated genome-scale knockout screens in Plasmodium berghei and Toxoplasma gondii, in which pooled transfections of multiple vectors were critical to increasing scale and throughput. These approaches have not yet been implemented in P. falciparum, mainly because the extent to which pooled transfections can be performed in this species still remains unknown. Here we use next-generation sequencing to quantitate uptake of a pool of 94 barcoded vectors. The distribution of vectors in different transfections allowed us to estimate the number of barcodes and DNA molecules taken up by the parasite population. Dilution cloning showed that single transfected parasites routinely carry as many as seven episomal barcodes, revealing an intake of multiple vectors in a highly non-uniform fashion. Transfection of non-overlapping fluorescent proteins, which allowed us to follow the dynamics of the process, confirmed the tendency for parasites to take up multiple vectors from the early stages of transfection. This finding has important implications for how reverse genetics can be scaled in P. falciparum.


2021 ◽  
Author(s):  
Pallavi M Gosavi ◽  
Kevin C Ngan ◽  
Megan Yeo ◽  
Cindy Su ◽  
Jiaming Li ◽  
...  

Targeted protein degradation (TPD) holds immense promise for drug discovery but mechanisms of acquired resistance to degraders remain to be fully identified. Here we used CRISPR-suppressor scanning to identify mechanistic classes of drug resistance mutations to molecular glue degraders in GSPT1 and RBM39, neosubstrates targeted by E3 ligase substrate receptors cereblon and DCAF15, respectively. While many mutations directly alter the ternary complex heterodimerization surface, distal resistance sites were also identified. Several distal mutations in RBM39 led to modest decreases in degradation yet can enable cell survival, underscoring how small differences in degradation can lead to resistance. Integrative analysis of resistance sites across GSPT1 and RBM39 revealed varying levels of sequence conservation and mutational constraint that control the emergence of different resistance mechanisms, highlighting that many regions co-opted by TPD are inessential. Altogether, our study identifies common resistance mechanisms for molecular glue degraders and outlines a general approach to survey neosubstrate requirements necessary for effective degradation.


Sign in / Sign up

Export Citation Format

Share Document