scholarly journals fingeRNAt - a novel tool for high-throughput analysis of nucleic acid-ligand interactions

2021 ◽  
Author(s):  
Natalia Anna Szulc ◽  
Zuzanna Mackiewicz ◽  
Janusz M Bujnicki ◽  
Filip Stefaniak

Computational methods play a pivotal role in drug discovery and are widely applied in virtual screening, structure optimization, and compound activity profiling. Over the last decades, almost all the attention in medicinal chemistry has been directed to protein-ligand binding, and computational tools have been created with this target in mind. With novel discoveries of functional RNAs and their possible applications, RNAs have gained considerable attention as potential drug targets. However, the availability of bioinformatics tools for nucleic acids is limited. Here, we introduce fingeRNAt - a software tool for detecting non-covalent interactions formed in complexes of nucleic acids with ligands. The program detects nine types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v) pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic interactions. However, the scope of detected interactions can be easily expanded using a simple plugin system. In addition, detected interactions can be visualized using the associated PyMOL plugin, which facilitates the analysis of medium-throughput molecular complexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural Interaction Fingerprint (SIFt) - a binary string where the respective bit in the fingerprint is set to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn, enables high-throughput analysis of interaction data using data analysis techniques. We present applications of fingeRNAt-generated interaction fingerprints for visual and computational analysis of RNA-ligand complexes, including analysis of interactions formed in experimentally determined RNA-small molecule ligand complexes deposited in the Protein Data Bank. We propose interaction-based similarity based on fingerprints as an alternative measure to RMSD to recapitulate complexes with similar interactions but different folding. We present an application of molecular fingerprints for the clustering of molecular complexes. This approach can be used to group ligands that form similar binding networks and thus have similar biological properties.

2004 ◽  
Vol 10 (4) ◽  
pp. 1241-1249 ◽  
Author(s):  
Carsten Müller-Tidow ◽  
Joachim Schwäble ◽  
Björn Steffen ◽  
Nicola Tidow ◽  
Burkhardt Brandt ◽  
...  

2015 ◽  
Vol 11 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Luciano Cardoso ◽  
Suellen Cordeiro ◽  
Marcio Fronza ◽  
Denise Endringer ◽  
Tadeu de Andrade ◽  
...  

Author(s):  
Ruoxing Lei ◽  
Erin A. Akins ◽  
Kelly C. Y. Wong ◽  
Nicole A. Repina ◽  
Kayla J. Wolf ◽  
...  

The Analyst ◽  
2021 ◽  
Author(s):  
Jiawei Qi ◽  
Pinhua Rao ◽  
Lele Wang ◽  
Li Xu ◽  
Yanli Wen ◽  
...  

Pattern recognition, also called “array sensing” is a recognition strategy with a wide and expandable analysis range, based on the high-throughput analysis data. In this work, we constructed a sensor...


Author(s):  
Xiaojia Jiang ◽  
Mingsong Zang ◽  
Fei Li ◽  
Chunxi Hou ◽  
Quan Luo ◽  
...  

Biological nanopore-based techniques have attracted more and more attention recently in the field of single-molecule detection, because they allow the real-time, sensitive, high-throughput analysis. Herein, we report an engineered biological...


2002 ◽  
Vol 161 (5) ◽  
pp. 1557-1565 ◽  
Author(s):  
Chih Long Liu ◽  
Wijan Prapong ◽  
Yasodha Natkunam ◽  
Ash Alizadeh ◽  
Kelli Montgomery ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document