scholarly journals SoyFGB v2.0: a unique access to variations of Chinese Soybean Gene Bank (CNSGB) germplasm

2021 ◽  
Author(s):  
Tianqing Zheng ◽  
Yinghui Li ◽  
Yanfei Li ◽  
Shengrui Zhang ◽  
Chunchao Wang ◽  
...  

In Chinese National Soybean GeneBank (CNSGB), we have collected more than 30,000 soybean accessions. However, data sharing for soybean remains an especially sensitive question, and how to share the genome variations within rule frame has been bothering the soybean germplasm workers for a long time. Here we release a big data source named Soybean Functional Genomics & Breeding database (SoyFGB v2.0) (https://sfgb.rmbreeding.cn/), which embed a core collection of 2,214 soybean resequencing genome (2K-SG) from the CNSGB germplasm. This source presents a unique example which may help elucidating the following three major functions for multiple genome data mining with general interests for plant researchers. 1) On-line analysis tools are provided by the Analysis module for haplotype mining in high-throughput genotyped germplasms with different methods. 2) Variations for 2K-SG are provided in SoyFGB v2.0 by Browse module which contains two functions of SNP and InDel. Together with the Gene (SNP & InDel) function embedded in Search module, the genotypic information of 2K-SG for targeting gene / region is accessible. 3) Scaled phenotype data of 42 traits, including 9 quality and 33 quantitative traits are provided by SoyFGB v2.0. With the scaled-phenotype data search and seed request tools under a control list, the germplasm information could be shared without direct downloading the unpublished phenotypic data or information of sensitive germplasms. In a word, the mode of data mining and sharing underlies SoyFGB v2.0 may inspire more ideas for works on genome resources of not only soybean but also the other plants.

2006 ◽  
Vol 22 (04) ◽  
pp. 248-252
Author(s):  
Song Sang ◽  
Hua-jun Li

A new aided decision support system (DSS) based on data warehouses is discussed. It is composed of data warehouses, on-line analysis processing, and data mining, which is new in the field of DSS. The essential principle, the setting up of the model, the development environment, the main system interface, and a sketch of the theory framework of the new DSS architecture are also described. The decision support system was applied to data abstraction for evaluating ship form scenarios. Tests have shown it to be practical and dependable in complex systems, such as in the demonstration of ship forms.


Author(s):  
K.-H. Herrmann ◽  
W. D. Rau ◽  
R. Sikeler

Quantitative recording of electron patterns and their rapid conversion into digital information is an outstanding goal which the photoplate fails to solve satisfactorily. For a long time, LLL-TV cameras have been used for EM adjustment but due to their inferior pixel number they were never a real alternative to the photoplate. This situation has changed with the availability of scientific grade slow-scan charged coupled devices (CCD) with pixel numbers exceeding 106, photometric accuracy and, by Peltier cooling, both excellent storage and noise figures previously inaccessible in image detection technology. Again the electron image is converted into a photon image fed to the CCD by some light optical transfer link. Subsequently, some technical solutions are discussed using the detection quantum efficiency (DQE), resolution, pixel number and exposure range as figures of merit.A key quantity is the number of electron-hole pairs released in the CCD sensor by a single primary electron (PE) which can be estimated from the energy deposit ΔE in the scintillator,


2010 ◽  
Vol 41 (2) ◽  
pp. 74-77 ◽  
Author(s):  
Herbert Volk ◽  
David Fuentes ◽  
Alexander Fuerbach ◽  
Christopher Miese ◽  
Wolfgang Koehler ◽  
...  

Neurosurgery ◽  
2004 ◽  
Vol 55 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Ali H. Mesiwala ◽  
Louis D. Scampavia ◽  
Peter S. Rabinovitch ◽  
Jaromir Ruzicka ◽  
Robert C. Rostomily

Abstract OBJECTIVE: This study tests the feasibility of using on-line analysis of tissue during surgical resection of brain tumors to provide biologically relevant information in a clinically relevant time frame to augment surgical decision making. For the purposes of establishing feasibility, we used measurement of deoxyribonucleic acid (DNA) content as the end point for analysis. METHODS: We investigated the feasibility of interfacing an ultrasonic aspiration (USA) system with a flow cytometer (FC) capable of analyzing DNA content (DNA-FC). The sampling system design, tissue preparation requirements, and time requirements for each step of the on-line analysis system were determined using fresh beef brain tissue samples. We also compared DNA-FC measurements in 28 nonneoplastic human brain samples with DNA-FC measurements in specimens of 11 glioma patients obtained from central tumor regions and surgical margins after macroscopically gross total tumor removal to estimate the potential for analysis of a biological marker to influence surgical decision making. RESULTS: With minimal modification, modern FC systems are fully capable of real-time, intraoperative analysis of USA specimens. The total time required for on-line analysis of USA specimens varies between 36 and 63 seconds; this time includes delivery from the tip of the USA to complete analysis of the specimen. Approximately 60% of this time is required for equilibration of the DNA stain. When compared with values for nonneoplastic human brain samples, 50% of samples (10 of 20) from macroscopically normal glioma surgical margins contained DNA-FC abnormalities potentially indicating residual tumor. CONCLUSION: With an interface of existing technologies, DNA content of brain tissue samples can be analyzed in a meaningful time frame that has the potential to provide real-time information for surgical guidance. The identification of DNA content abnormalities in macroscopically normal tumor resection margins by DNA-FC supports the practical potential for on-line analysis of a tumor marker to guide surgical resections. The development of such a device would provide neurosurgeons with an objective method for intraoperative analysis of a clinically relevant biological parameter that can be measured in real time.


Sign in / Sign up

Export Citation Format

Share Document