scholarly journals Class I DISARM provides anti-phage and anti-conjugation activity by unmethylated DNA recognition

2021 ◽  
Author(s):  
Cristian Aparicio-Maldonado ◽  
Gal Ofir ◽  
Andrea Salini ◽  
Rotem Sorek ◽  
Franklin L. Nobrega ◽  
...  

Bacteriophages impose a strong evolutionary pressure on microbes for the development of mechanisms of survival. Multiple new mechanisms of innate defense have been described recently, with the molecular mechanism of most of them remaining uncharacterized. Here, we show that a Class 1 DISARM (defense island system associated with restriction-modification) system from Serratia sp. provides broad protection from double-stranded DNA phages, and drives a population of single-stranded phages to extinction. We identify that protection is not abolished by deletion of individual DISARM genes and that the absence of methylase genes drmMI and drmMII does not result in autoimmunity. In addition to antiphage activity we also observe that DISARM limits conjugation, and this activity is linked to the number of methylase cognate sites in the plasmid. Overall, we show that Class 1 DISARM provides robust anti-phage and anti-plasmid protection mediated primarily by drmA and drmB, which provide resistance to invading nucleic acids using a mechanism enhanced by the recognition of unmethylated cognate sites of the two methylases drmMI and drmMII.

Biochemistry ◽  
1990 ◽  
Vol 29 (48) ◽  
pp. 10727-10733 ◽  
Author(s):  
John D. Taylor ◽  
Annette J. Goodall ◽  
Christian L. Vermote ◽  
Stephen E. Halford

Gene ◽  
1991 ◽  
Vol 97 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Alan W. Hammond ◽  
Gary F. Gerard ◽  
Deb K. Chatterjee

2010 ◽  
Vol 38 (9) ◽  
pp. 3019-3030 ◽  
Author(s):  
Feroz Khan ◽  
Yoshikazu Furuta ◽  
Mikihiko Kawai ◽  
Katarzyna H. Kaminska ◽  
Ken Ishikawa ◽  
...  

2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Alessandra G. de Melo ◽  
Simon J. Labrie ◽  
Jeannot Dumaresq ◽  
Richard J. Roberts ◽  
Denise M. Tremblay ◽  
...  

Brevibacterium linens is one of the main bacteria found in the smear of surface-ripened cheeses. The genome of the industrial strain SMQ-1335 was sequenced using PacBio. It has 4,209,935 bp, a 62.6% G+C content, 3,848 open reading frames, and 61 structural RNAs. A new type I restriction-modification system was identified.


2004 ◽  
Vol 70 (9) ◽  
pp. 5546-5556 ◽  
Author(s):  
Jonathan O'Driscoll ◽  
Frances Glynn ◽  
Oonagh Cahalane ◽  
Mary O'Connell-Motherway ◽  
Gerald F. Fitzgerald ◽  
...  

ABSTRACT A novel restriction-modification system, designated LlaJI, was identified on pNP40, a naturally occurring 65-kb plasmid from Lactococcus lactis. The system comprises four adjacent similarly oriented genes that are predicted to encode two m5C methylases and two restriction endonucleases. The LlaJI system, when cloned into a low-copy-number vector, was shown to confer resistance against representatives of the three most common lactococcal phage species. This phage resistance phenotype was found to be strongly temperature dependent, being most effective at 19°C. A functional analysis confirmed that the predicted methylase-encoding genes, llaJIM1 and llaJIM2, were both required to mediate complete methylation, while the assumed restriction enzymes, specified by llaJIR1 and llaJIR2, were both necessary for the complete restriction phenotype. A Northern blot analysis revealed that the four LlaJI genes are part of a 6-kb operon and that the relative abundance of the LlaJI-specific mRNA in the cells does not appear to contribute to the observed temperature-sensitive profile. This was substantiated by use of a LlaJI promoter-lacZ fusion, which further revealed that the LlaJI operon appears to be subject to transcriptional regulation by an as yet unidentified element(s) encoded by pNP40.


Sign in / Sign up

Export Citation Format

Share Document