scholarly journals An automated microfluidic platform integrating functional vascularized organoids-on-chip

2021 ◽  
Author(s):  
Clément Quintard ◽  
Gustav Jonsson ◽  
Camille Laporte ◽  
Caroline Bissardon ◽  
Amandine Pitaval ◽  
...  

The development of vascular networks on-chip is crucial for the long-term culture of three-dimensional cell aggregates such as organoids, spheroids, tumoroids, and tissue explants. Despite the rapid advancement of microvascular network systems and organoid technology, vascularizing organoids-on-chips remains a challenge in tissue engineering. Moreover, most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical settings to operate. Considering these constraints, we developed an innovative platform to establish and monitor the formation of endothelial networks around model spheroids of mesenchymal and endothelial cells as well as blood vessel organoids generated from pluripotent stem cells, cultured for up to 15 days on-chip. Importantly, these networks were functional, demonstrating intravascular perfusion within the spheroids or vascular organoids connected to neighbouring endothelial beds. This microphysiological system thus represents a viable organ-on-chip model to vascularize biological tissues and should allow to establish perfusion into organoids using advanced microfluidics.

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 675 ◽  
Author(s):  
Yi Zhao ◽  
Ranjith Kankala ◽  
Shi-Bin Wang ◽  
Ai-Zheng Chen

With advantageous features such as minimizing the cost, time, and sample size requirements, organ-on-a-chip (OOC) systems have garnered enormous interest from researchers for their ability for real-time monitoring of physical parameters by mimicking the in vivo microenvironment and the precise responses of xenobiotics, i.e., drug efficacy and toxicity over conventional two-dimensional (2D) and three-dimensional (3D) cell cultures, as well as animal models. Recent advancements of OOC systems have evidenced the fabrication of ‘multi-organ-on-chip’ (MOC) models, which connect separated organ chambers together to resemble an ideal pharmacokinetic and pharmacodynamic (PK-PD) model for monitoring the complex interactions between multiple organs and the resultant dynamic responses of multiple organs to pharmaceutical compounds. Numerous varieties of MOC systems have been proposed, mainly focusing on the construction of these multi-organ models, while there are only few studies on how to realize continual, automated, and stable testing, which still remains a significant challenge in the development process of MOCs. Herein, this review emphasizes the recent advancements in realizing long-term testing of MOCs to promote their capability for real-time monitoring of multi-organ interactions and chronic cellular reactions more accurately and steadily over the available chip models. Efforts in this field are still ongoing for better performance in the assessment of preclinical attributes for a new chemical entity. Further, we give a brief overview on the various biomedical applications of long-term testing in MOCs, including several proposed applications and their potential utilization in the future. Finally, we summarize with perspectives.


Author(s):  
Kathryn Grandfield ◽  
Anders Palmquist ◽  
Håkan Engqvist

Interfacial relationships between biomaterials and tissues strongly influence the success of implant materials and their long-term functionality. Owing to the inhomogeneity of biological tissues at an interface, in particular bone tissue, two-dimensional images often lack detail on the interfacial morphological complexity. Furthermore, the increasing use of nanotechnology in the design and production of biomaterials demands characterization techniques on a similar length scale. Electron tomography (ET) can meet these challenges by enabling high-resolution three-dimensional imaging of biomaterial interfaces. In this article, we review the fundamentals of ET and highlight its recent applications in probing the three-dimensional structure of bioceramics and their interfaces, with particular focus on the hydroxyapatite–bone interface, titanium dioxide–bone interface and a mesoporous titania coating for controlled drug release.


Author(s):  
Kostas Siozios ◽  
Alexandros Bartzas ◽  
Dimitrios Soudris

2020 ◽  
Vol 117 (26) ◽  
pp. 14667-14675 ◽  
Author(s):  
Mingchao Zhang ◽  
Rui Guo ◽  
Ke Chen ◽  
Yiliang Wang ◽  
Jiali Niu ◽  
...  

Many natural materials possess built-in structural variation, endowing them with superior performance. However, it is challenging to realize programmable structural variation in self-assembled synthetic materials since self-assembly processes usually generate uniform and ordered structures. Here, we report the formation of asymmetric microribbons composed of directionally self-assembled two-dimensional nanoflakes in a polymeric matrix during three-dimensional direct-ink printing. The printed ribbons with embedded structural variations show site-specific variance in their mechanical properties. Remarkably, the ribbons can spontaneously transform into ultrastretchable springs with controllable helical architecture upon stimulation. Such springs also exhibit superior nanoscale transport behavior as nanofluidic ionic conductors under even ultralarge tensile strains (>1,000%). Furthermore, to show possible real-world uses of such materials, we demonstrate in vivo neural recording and stimulation using such springs in a bullfrog animal model. Thus, such springs can be used as neural electrodes compatible with soft and dynamic biological tissues.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 2228-2236 ◽  
Author(s):  
Xuejia Hu ◽  
Shukun Zhao ◽  
Ziyi Luo ◽  
Yunfeng Zuo ◽  
Fang Wang ◽  
...  

Multicellular aggregates in three-dimensional (3D) environments provide novel solid tumor models that can provide insight into in vivo drug resistance.


2015 ◽  
Vol 16 (12) ◽  
pp. 5517-5527 ◽  
Author(s):  
Delphine Antoni ◽  
Hélène Burckel ◽  
Elodie Josset ◽  
Georges Noel

2006 ◽  
Vol 98 (5) ◽  
pp. 705-712 ◽  
Author(s):  
Akira Furuta ◽  
Shunichiro Miyoshi ◽  
Yuji Itabashi ◽  
Tatsuya Shimizu ◽  
Shinichiro Kira ◽  
...  

2014 ◽  
Vol 115 (17) ◽  
pp. 172616 ◽  
Author(s):  
Ruogang Zhao ◽  
Thomas Boudou ◽  
Wei-Gang Wang ◽  
Christopher S. Chen ◽  
Daniel H. Reich

Sign in / Sign up

Export Citation Format

Share Document